Fish Intake, Contaminants, and Human Health: Evaluating the Risks and the Benefits

Dariush Mozaffarian, MD, DrPH, Eric B. Rimm, ScD

Since the publication of pioneering studies demonstrating low rates of death from coronary heart disease (CHD) among Greenland Eskimos, fish (used herein to refer to finfish or shellfish) has been considered a healthy food. During ensuing years, evidence from several research paradigms—including animal-experimental, observational, and clinical studies—further supported this hypothesis and identified 2 long-chain n-3 polyunsaturated fatty acids (n-3 PUFA) eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), as the likely active constituents.

DHA also appears important for neurodevelopment during gestation and infancy. Conversely, concern has arisen over potential harm from mercur y, dioxins, and polychlorinated biphenyls (PCBs) present in some fish species. The public is faced with seemingly conflicting reports on the risks and benefits of fish intake, resulting in controversy and confusion over the role of fish consumption in a healthy diet. To elucidate the relative risks and benefits, we reviewed the scientific evidence for adverse and beneficial health effects of fish consumption.

EVIDENCE ACQUISITION
Identification of Studies

A myriad of exposures and outcomes have been related to fish consumption; we focused on populations and topics for which evidence and concern are greatest. We searched MEDLINE, governmental reports, and meta-analyses to identify reports published through April 2006 evaluating (1) intake of fish or fish oil and cardiovascular risk, (2) effects of methylmercury and fish oil on early neurodevelopment, (3) risks of methylmercury for cardiovascular and neurologic outcomes in adults, and (4) health risks of dioxins and polychlorinated biphenyls in fish.

Context

Fish (finfish or shellfish) may have health benefits and also contain contaminants, resulting in confusion over the role of fish consumption in a healthy diet.

Evidence Acquisition

We searched MEDLINE, governmental reports, and meta-analyses, supplemented by hand reviews of references and direct investigator contacts, to identify reports published through April 2006 evaluating (1) intake of fish or fish oil and cardiovascular risk, (2) effects of methylmercury and fish oil on early neurodevelopment, (3) risks of methylmercury for cardiovascular and neurologic outcomes in adults, and (4) health risks of dioxins and polychlorinated biphenyls in fish.

Evidence Synthesis

Modest consumption of fish (eg, 1-2 servings/wk), especially species higher in the n-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), reduces risk of coronary death by 36\% (95\% confidence interval, 20\%-50\%; P < .001) and total mortality by 17\% (95\% confidence interval, 0\%-32\%; P = .046) and may favorably affect other clinical outcomes. Intake of 250 mg/d of EPA and DHA appears sufficient for primary prevention. DHA appears beneficial for, and low-level methylmercury may adversely affect, early neurodevelopment. Women of childbearing age and nursing mothers should consume 2 seafood servings/wk, limiting intake of selected species. Health effects of low-level methylmercury in adults are not clearly established; methylmercury may modestly decrease the cardiovascular benefits of fish intake. A variety of seafood should be consumed; individuals with very high consumption (≥5 servings/wk) should limit intake of species highest in mercury levels. Levels of dioxins and polychlorinated biphenyls in fish are low, and potential carcinogenic and other effects are outweighed by potential benefits of fish intake and should have little impact on choices or consumption of seafood (women of childbearing age should consult regional advisories for locally caught freshwater fish).

Conclusions

For major health outcomes among adults, based on both the strength of the evidence and the potential magnitudes of effect, the benefits of fish intake exceed the potential risks. For women of childbearing age, benefits of modest fish intake, excepting a few selected species, also outweigh risks.

©2006 American Medical Association. All rights reserved.

JAMA. 2006;296:1885-1899 www.jama.com

©2006 American Medical Association. All rights reserved.

(Reprinted) JAMA, October 18, 2006—Vol 296, No. 15 1885
FISH INTAKE, CONTAMINANTS, AND HUMAN HEALTH

Figure 1. Relationship Between Intake of Fish or Fish Oil and Rates of CHD Death in Prospective Cohort Studies and Randomized Clinical Trials

Circular data markers indicate prospective studies; square data markers, randomized trials. Absolute coronary heart disease (CHD) mortality rates vary more than 100-fold across different populations (due to differences in age, prior CHD, and other risk factors), but the relative effects of intake of fish or fish oil are consistent, whether for primary or secondary prevention, for cohort studies or randomized trials, or for comparing populations at higher or lower absolute risk. Compared with little or no intake, modest consumption (~290-500 mg/d eicosapentaenoic acid [EPA] + docosahexaenoic acid [DHA]) is associated with lower risk of CHD death, while at higher levels of intake, rates of CHD death are already low and are not substantially further reduced by greater intake. For instance, populations with very high fish intake (Yokoyama et al[7] [secondary prevention; square 16]) already have much lower CHD death rates than otherwise comparable populations (Gruppo Italiano[4] [square 19]), and additional intake of fish or fish oil produces little further reduction in CHD mortality. Only 1 study (Burr et al[3] [square 20]) found results markedly divergent from this pattern. One study[5] was not included due to limited events data and limited multivariable adjustment.

*tateral) and (clinical trial or prospective or meta-analysis); (fish or n-3 PUFAs or omega-3 or docosahexaenoic acid or mercury or methylmercury) and (cognitive or neurologic or neurodevelopment) and (clinical trial or prospective or meta-analysis); (mercury or methylmercury) and (coronary or cardiac or cardiovascular or cognition or neurologic) and (clinical trial or prospective or meta-analysis); (dioxin or polychlorinated biphenyl or PCB) and (fish or seafood).

MEDLINE searches were restricted to identify only English-language reports, studies in humans, and adult or child populations (as appropriate) and were supplemented by searches of related articles of relevant identified manuscripts as well as by hand reviews of references from identified reports and direct contact with investigators.

Study Selection
One author (D.M.) screened all identified studies, and the final articles included were selected by both authors by consensus. Because fish intake is related to exposure to many different compounds, including n-3 PUFAs, mercury, and PCBs and dioxins, as well as to multiple different health outcomes, including cardiovascular diseases, neurologic outcomes, and cancer, a systematic quantitative review of every possible combination was beyond the constraints of this report. We concentrated on studies evaluating or estimating risk in humans, focusing on the evidence, when available, from randomized clinical trials and large prospective studies. Metabolic studies and animal-experimental evidence were also considered to elucidate potential mechanisms of effect. The evidence for risks and benefits was considered overall and among different at-risk populations. When possible, pooled or meta-analyses were performed to characterize effects most precisely. Other potential benefits of fish intake (eg, for cognitive decline or dementia, depression or neuropsychiatric disor-
EVIDENCE SYNTHESIS

Benefits of Fish Intake

Cardiovascular Outcomes. Death from CHD—ie, documented or suspected fatal myocardial infarction—and sudden death—ie, a sudden pulseless condition of presumed cardiac etiology—are clinically defined entities often sharing the final common pathway of ventricular arrhythmia, often ischemia-induced ventricular fibrillation. The evidence from prospective studies and randomized trials suggests that consumption of fish or fish oil lowers risk of CHD death and sudden death (Figure 1 and Figure 2). Across different studies (Figure 1), compared with little or no intake, modest consumption (≈250–500 mg/d of EPA and DHA) lowers relative risk by 25% or more. Higher intakes do not substantially further lower CHD mortality, suggesting a threshold of effect. Pooling all studies, this pattern was clearly evident (Figure 2). At intakes up to 250 mg/d, the relative risk of CHD death was 14.6% lower (95% confidence interval [CI], 8% to 21%) per each 100 mg/d of EPA and DHA, for a total risk reduction of 36% (95% CI, 20% to 50%). At higher intakes, little additional risk reduction was present (0.0% change per each 100 mg/d; 95% CI, −0.9% to +0.8%). This threshold effect explains findings among Japanese populations, in whom high background fish intake (eg, median 900 mg/d of EPA and DHA) is associated with very low CHD death rates (eg, 87% lower than comparable Western populations, and additional n-3 PUFA intake predicts little further reduction in CHD death; thus, most of the population is already above the threshold for maximum mortality benefits. Comparing different types of fish, lower risk appears more strongly related to intake of oily fish (eg, salmon, herring, sardines), rather than lean fish (eg, cod, catfish, halibut). Fish intake may modestly affect other cardiovascular outcomes, but evidence is not as robust as for CHD death (Table 1).

n-3 PUFAs influence several cardiovascular risk factors. Effects occur within weeks of intake and may result from altered membrane fluidity and receptor responses following incorporation of n-3 PUFAs into cell membranes and direct binding of n-3 PUFAs to intracellular receptors regulating gene transcription. The heterogeneity of the effects of fish or fish oil intake on cardiovascular outcomes is likely related to varying dose and time responses of effects on the risk factors. At typical dietary intakes, antiarrhythmic effects predominate, reducing risk of sudden death and CHD death within weeks. At higher doses, maximum antiarrhythmic effects have been achieved, but other physiologic effects may modestly impact other clinical outcomes (possibly requiring years to produce clinical benefits). For instance, nonfatal myocardial infarction may not be significantly affected by lower doses or shorter durations of intake but may be modestly reduced by higher doses or prolonged intake (eg, 1.8 g/d for 5 years).

Heterogeneity of clinical effects may also be related to differing pathophysiologies of the clinical outcomes. For instance, disparate pathophysiologies of primary ventricular fibrillation (often ischemia-induced) vs recurrent ventricular tachyarrhythmias (ectopic or reentrant) may explain stronger effects of n-3 PUFAs on the former. Similarly, biological differences in development of atherosclerosis vs acute plaque rupture/thrombosis vs arrhythmia would account for heterogeneous effects of n-3 PUFAs on plaque progression vs nonfatal myocardial infarction vs CHD death. Consumption of fish may displace that of other foods, such as meats or dairy products, in the diet. However, this likely accounts for little of the observed health benefits, because foods replaced would be highly variable among individuals and across cultures.
and calcium ion channels, reducing susceptibility to ischemia-induced arrhythmia; and (2) reduced left ventricular workload and improved myocardial efficiency as a result of reduced heart rate, lower systemic vascular resistance, and improved diastolic filling. At higher levels of intake seen with fish oil supplementation or higher intakes (eg, 2 g/d n-3 PUFAs)17,50 many risk reduction occurs with modest intake (>750 mg/d EPA + DHA), with additional benefit with higher intakes.2-4,6-17,45-51

Table 1. Summary of Evidence for Effects of Consumption of Fish or Fish Oil on Cardiovascular Outcomes

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Clinical Effect</th>
<th>Strength of Evidence</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHD mortality</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHD death</td>
<td>≈ 35% decrease</td>
<td>Strong</td>
<td>Probable threshold of effect—most risk reduction occurs with modest intake (≈250 mg/d EPA + DHA), with additional benefit with higher intakes.2-4,6-17,45-51</td>
</tr>
<tr>
<td>Sudden death</td>
<td>≈ 50% decrease</td>
<td>Strong</td>
<td></td>
</tr>
<tr>
<td>Ischemic stroke</td>
<td>≈ 30% decrease</td>
<td>Moderate</td>
<td>Strong evidence from prospective cohort studies2-4,6-17,45-51; no RCTs.</td>
</tr>
<tr>
<td>Nonfatal CHD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nonfatal MI</td>
<td>Modest benefit?</td>
<td>Equivocal</td>
<td>Possible benefits at very high intakes (≈2 g/d n-3 PUFAs).</td>
</tr>
<tr>
<td>Progression of atherosclerosis</td>
<td>Modest benefit?</td>
<td>Equivocal</td>
<td>Mixed results in cohort studies50 and RCTs51-53</td>
</tr>
<tr>
<td>Postangioplasty restenosis</td>
<td>Modest benefit?</td>
<td>Equivocal</td>
<td>Possible benefits in a meta-analysis of RCTs51-53</td>
</tr>
<tr>
<td>Recurrent ventricular tachyarrhythmias</td>
<td>Modest benefit?</td>
<td>Equivocal</td>
<td>Mixed results in 3 RCTs54-56</td>
</tr>
<tr>
<td>Atrial fibrillation</td>
<td>≈ 30% decrease</td>
<td>Limited</td>
<td>Mixed results in 2 cohort studies51,54-56; benefit in 1 RCT54</td>
</tr>
<tr>
<td>Congestive heart failure</td>
<td>≈ 30% decrease</td>
<td>Limited</td>
<td>Benefit in 1 prospective cohort study54</td>
</tr>
</tbody>
</table>

Abbreviations: CHD, coronary heart disease; EPA, eicosapentaenoic acid; DHA, docosahexaenoic acid; MI, myocardial infarction; n-3 PUFA, n-3 polyunsaturated fatty acid; RCT, randomized clinical trial.

*See Figure 1.

Figure 3. Schema of Potential Dose Responses and Time Courses for Altering Clinical Events of Physiologic Effects of Fish or Fish Oil Intake

The relative strength of effect is estimated from effects of eicosapentaenoic acid (EPA) + docosahexaenoic acid (DHA) on each risk factor and on the corresponding impact on cardiovascular risk.70,71,74,81 For example, dose response for antiarrhythmic effects is initially steep with a subsequent plateau, and clinical benefits may occur within weeks, while dose response for triglyceride effects is more gradual and monotonically, and clinical benefits may require years of intake. At typical Western levels of intake (eg, <750 mg/d EPA + DHA), the physiologic effects most likely to account for clinical cardiovascular benefits include (1) modulation of myocardial sodium and calcium ion channels, reducing susceptibility to ischemia-induced arrhythmia;16,19 and (2) reduced left ventricular workload and improved myocardial efficiency as a result of reduced heart rate, lower systemic vascular resistance, and improved diastolic filling.47-50 At higher levels of intake seen with fish oil supplementation or in Japanese populations48-50 (>750 mg/d EPA + DHA), maximum antiarrhythmic effects have been achieved and clinically relevant effects occur on levels of serum triglycerides49 and possibly, at very high doses, thrombosis.73 Potentially important effects on endothelial,21 autonomic,74 and inflammatory41 responses are not shown because dose responses and time courses of such effects on clinical risk are not well established. Effects are not necessarily exclusive: eg, antiarrhythmic effects may be partly mediated by effects on blood pressure (BP) or heart rate.

The relative strength of effect is estimated from effects of eicosapentaenoic acid (EPA) + docosahexaenoic acid (DHA) on each risk factor and on the corresponding impact on cardiovascular risk.70,71,74,81 For example, dose response for antiarrhythmic effects is initially steep with a subsequent plateau, and clinical benefits may occur within weeks, while dose response for triglyceride effects is more gradual and monotonically, and clinical benefits may require years of intake. At typical Western levels of intake (eg, <750 mg/d EPA + DHA), the physiologic effects most likely to account for clinical cardiovascular benefits include (1) modulation of myocardial sodium and calcium ion channels, reducing susceptibility to ischemia-induced arrhythmia;16,19 and (2) reduced left ventricular workload and improved myocardial efficiency as a result of reduced heart rate, lower systemic vascular resistance, and improved diastolic filling.47-50 At higher levels of intake seen with fish oil supplementation or in Japanese populations48-50 (>750 mg/d EPA + DHA), maximum antiarrhythmic effects have been achieved and clinically relevant effects occur on levels of serum triglycerides49 and possibly, at very high doses, thrombosis.73 Potentially important effects on endothelial,21 autonomic,74 and inflammatory41 responses are not shown because dose responses and time courses of such effects on clinical risk are not well established. Effects are not necessarily exclusive: eg, antiarrhythmic effects may be partly mediated by effects on blood pressure (BP) or heart rate.

©2006 American Medical Association. All rights reserved.
improved visual acuity in a dose-dependent manner.23 Results for cognitive testing are less consistent, possibly due to differences in neurologic domains evaluated21,23,26; a quantitative pooled analysis of 8 trials estimated that increasing maternal intake of DHA by 100 mg/d increased child IQ by 0.13 points (95% CI, 0.08 to 0.18).24 Most trials evaluated effects of maternal DHA intake during nursing, rather than pregnancy. In a trial among 341 pregnant women, treatment with cod liver oil from week 18 until 3 months postpartum increased DHA levels in cord blood by 50% and raised mental processing scores, a measure of intelligence, at age 4 years.27 This is consistent with observational studies showing positive associations between maternal DHA levels or fish intake during pregnancy and behavioral attention scores, visual recognition memory, and language comprehension in infancy.98-100 Thus, while dose responses and specific effects require further investigation, these studies together indicate that maternal intake of DHA is beneficial for early neurodevelopment.

Risks of Mercury

Mercury is a reactive heavy metal emitted from natural sources (volcanoes) and human sources (coal-fired electric power plants, gold mining, institutional boilers, chlorine production, and waste incineration).101 From the atmosphere, mercury cycles from rainwater into lakes and oceans, where it is converted by microbial activity into organic methylmercury. Inorganic mercury is poorly absorbed following ingestion, and elemental mercury does not readily cross tissue barriers. In contrast, methylmercury is readily absorbed and actively transported into tissues.27,28,30 Thus, methylmercury bioaccumulates in aquatic food chains and has greater potential toxicity than inorganic mercury.27,28,30 Concentrations of methylmercury in aquatic species depend on levels of environmental contamination and on the predatory nature and lifespan of the species. Larger, longer-living predators (eg, swordfish, shark) have higher tissue concentrations, while smaller or shorter-lived species (eg, shellfish, salmon) have very low concentrations (Table 2).122

Preparation methods have little impact on methylmercury content.27 Health effects of very high mercury exposure following occupational or industrial accidents are well documented, including paresthesias, ataxia, and sensory abnormalities in adults, and delayed cognitive and neuromuscular development following in utero exposure.27,131 Toxicity appears related to binding of methylmercury to sulfhydryl groups of enzymes, ion channels, and receptors, resulting in inhibition of antioxidant systems and production of free radicals and reactive oxygen species.27,29 Health effects of chronic low-level mercury exposure—ie, that seen with fish consumption—are less well established. The public is aware of the potential harm from mercury in fish but lacks clear understanding of who is at risk or which seafood species contain mercury.35,36 We review the evidence for health effects below.

Methylmercury and Neurodevelopment

Methylmercury crosses the placenta, and fetal exposure correlates with maternal

Figure 4. Risk of Total Mortality Due to Intake of Fish or Fish Oil in Randomized Clinical Trials

<table>
<thead>
<tr>
<th>Source</th>
<th>% Weight</th>
<th>Relative Risk (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brouwer et al.52 2006</td>
<td>3.9</td>
<td>0.57 (0.24-1.38)</td>
</tr>
<tr>
<td>Brox et al.57 2001</td>
<td>0.3</td>
<td>0.17 (0.01-4.05)</td>
</tr>
<tr>
<td>Burr et al.59 1989</td>
<td>18.7</td>
<td>0.71 (0.55-0.92)</td>
</tr>
<tr>
<td>Burr et al.51 2003</td>
<td>24.4</td>
<td>1.15 (0.99-1.34)</td>
</tr>
<tr>
<td>Eritsland et al.64 1996</td>
<td>2.9</td>
<td>1.22 (0.43-3.51)</td>
</tr>
<tr>
<td>Gruppo Italiano6 1999</td>
<td>26.0</td>
<td>0.96 (0.76-0.97)</td>
</tr>
<tr>
<td>Johansen et al.94 1999</td>
<td>0.7</td>
<td>0.33 (0.03-3.18)</td>
</tr>
<tr>
<td>Kauf et al.86 1992</td>
<td>0.3</td>
<td>0.28 (0.01-6.78)</td>
</tr>
<tr>
<td>Leaf et al.81 1984</td>
<td>0.4</td>
<td>0.20 (0.01-4.18)</td>
</tr>
<tr>
<td>Leaf et al.81 2005</td>
<td>4.6</td>
<td>0.97 (0.49-2.46)</td>
</tr>
<tr>
<td>Nilson et al.52 2001</td>
<td>4.6</td>
<td>1.00 (0.45-2.24)</td>
</tr>
<tr>
<td>Raitt et al.57 2005</td>
<td>2.3</td>
<td>0.40 (0.12-1.32)</td>
</tr>
<tr>
<td>Sackss et al.86 1995</td>
<td>0.3</td>
<td>0.32 (0.01-7.57)</td>
</tr>
<tr>
<td>Singh et al.86 1997</td>
<td>9.9</td>
<td>0.56 (0.34-0.91)</td>
</tr>
<tr>
<td>von Schacky et al.57 1999</td>
<td>0.6</td>
<td>0.50 (0.05-5.59)</td>
</tr>
<tr>
<td>Overall</td>
<td>100.0</td>
<td>0.83 (0.68-1.00)</td>
</tr>
</tbody>
</table>

The size of the shaded squares indicates each trial’s contribution (inverse-variance weight) to the pooled estimate (dotted line) and 95% confidence interval (CI, diamond), determined by random effects meta-analysis.27 Intake of fish or fish oil reduced total mortality by 17% (\(P = .046\)), with evidence for heterogeneity between trials (\(P = .04\) for heterogeneity). If 2 trials with methodologic concerns51,93 were excluded, the pooled relative risk was 0.83 (95% CI, 0.74-0.92; \(P = .001\)) with little evidence for heterogeneity (\(P = .75\)). A recently reported trial of fish oil among Japanese individuals57 was not included in the primary analysis due to very high fish intake in the reference group (estimated eicosapentaenoic acid + docosahexaenoic acid intake, 900 mg/d) which would obviate mortality benefits of additional fish oil intake. When this trial was added to the secondary analysis, the pooled relative risk was 0.87 (95% CI, 0.76-0.99; \(P = .048\); \(P = .29\) for heterogeneity).

©2006 American Medical Association. All rights reserved.

(Reprinted) JAMA, October 18, 2006—Vol 296, No. 15 1889
exposure.132 Marked neurodevelopmental abnormalities occur in children following very high gestational exposure,27,131 such as from maternal consumption of highly contaminated fish (10-30 ppm mercury) from industrially polluted Minamata Bay, Japan, in the 1950s, or of contaminated grain in Iraq in 1971 (maternal intake, 710-5700 \textmu g/kg per day; 18-598 ppm mercury in maternal hair). More typical methyl mercury exposures are substantially lower: among US women of childbearing age, median (10th-95th percentiles) levels of mercury in hair were 0.19 (0.04-1.73) ppm overall and 0.34 (0.09-2.75) ppm among women consuming 3 or more servings of fish per month.133

Table 2. Levels of n-3 Fatty Acids and Contaminants in Commonly Consumed Fish, Shellfish, and Other Foods*

<table>
<thead>
<tr>
<th>Fish</th>
<th>EPA + DHA, mg/serving (Serving Size†)</th>
<th>EPA + DHA, mg/100 g (3.5 oz)</th>
<th>Selenium, \mu g/g (ppm)</th>
<th>Mercury, \mu g/g (ppm)</th>
<th>PCBs, ng/g (ppb)</th>
<th>Dioxins, TEQ pg/g (ppt)‡</th>
</tr>
</thead>
<tbody>
<tr>
<td>FDA action level33,102</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>1.0</td>
<td>2000</td>
<td>None§</td>
</tr>
<tr>
<td>Anchovy</td>
<td>1165 (2 oz)</td>
<td>2055</td>
<td>0.68</td>
<td><0.05</td>
<td>0.35 (1997-1998)103</td>
<td></td>
</tr>
<tr>
<td>Catfish, farmed</td>
<td>253 (5 oz)</td>
<td>177</td>
<td>0.15</td>
<td><0.05</td>
<td>0.53 (1995-1997)105</td>
<td></td>
</tr>
<tr>
<td>Cod, Atlantic</td>
<td>284 (6.3 oz)</td>
<td>158</td>
<td>0.38</td>
<td>0.10</td>
<td>0.05 (1995-1997)107</td>
<td></td>
</tr>
<tr>
<td>Fish burger, fast food</td>
<td>337 (2.2 oz)</td>
<td>546</td>
<td>0.17‡</td>
<td><0.05</td>
<td>8 (2001)109</td>
<td></td>
</tr>
<tr>
<td>Fish sticks, frozen</td>
<td>193 (3.2 oz)</td>
<td>214</td>
<td>0.17</td>
<td><0.05</td>
<td>0.04 (2001)110</td>
<td></td>
</tr>
<tr>
<td>Golden bass (tilefish), Gulf of Mexico</td>
<td>1358 (5.3 oz)</td>
<td>905</td>
<td>0.52</td>
<td>1.45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Golden bass (tilefish), Atlantic</td>
<td>1358 (5.3 oz)</td>
<td>905</td>
<td>0.52</td>
<td>0.14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Halibut</td>
<td>740 (5.6 oz)</td>
<td>465</td>
<td>0.47</td>
<td>0.25</td>
<td>1.00 (1995-1997)108</td>
<td></td>
</tr>
<tr>
<td>Herring, Atlantic</td>
<td>1712 (3 oz)</td>
<td>2014</td>
<td>0.47</td>
<td><0.05</td>
<td>0.97 (1995-1998)102</td>
<td></td>
</tr>
<tr>
<td>Mackerel, Atlantic</td>
<td>1059 (3.1 oz)</td>
<td>1203</td>
<td>0.52</td>
<td>0.05</td>
<td>0.87 (1997-1998)107</td>
<td></td>
</tr>
<tr>
<td>Mackerel, King</td>
<td>618 (5.4 oz)</td>
<td>401</td>
<td>0.47</td>
<td>0.73</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mahimahi</td>
<td>221 (5.6 oz)</td>
<td>139</td>
<td>0.47</td>
<td>0.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pollock, Alaskan</td>
<td>281 (2.1 oz)</td>
<td>468</td>
<td>0.43</td>
<td><0.05</td>
<td>0.01 (1998)107</td>
<td></td>
</tr>
<tr>
<td>Salmon, farmed</td>
<td>4504 (6 oz)</td>
<td>2648</td>
<td>0.41</td>
<td><0.05</td>
<td>21 (2001-2003)112</td>
<td></td>
</tr>
<tr>
<td>Salmon, wild</td>
<td>1774 (6 oz)</td>
<td>1043</td>
<td>0.46</td>
<td><0.05</td>
<td>3 (2002)113</td>
<td></td>
</tr>
<tr>
<td>Sardines</td>
<td>556 (2 oz)</td>
<td>982</td>
<td>0.53</td>
<td><0.05</td>
<td>0.03 (2002)115</td>
<td></td>
</tr>
<tr>
<td>Shark</td>
<td>585 (3 oz)</td>
<td>689</td>
<td>0.34</td>
<td>0.99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Snapper</td>
<td>546 (6 oz)</td>
<td>321</td>
<td>0.49</td>
<td>0.19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Swordfish</td>
<td>868 (3.7 oz)</td>
<td>819</td>
<td>0.62</td>
<td>0.98</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trout</td>
<td>581 (2.2 oz)</td>
<td>935</td>
<td>0.15</td>
<td>0.07</td>
<td>11 (2002)113</td>
<td></td>
</tr>
<tr>
<td>Tuna, light (skipjack)</td>
<td>228 (3 oz)</td>
<td>270</td>
<td>0.80</td>
<td>0.12</td>
<td>45 (2001)110</td>
<td></td>
</tr>
<tr>
<td>Tuna, white (albacore)</td>
<td>733 (3 oz)</td>
<td>862</td>
<td>0.66</td>
<td>0.35</td>
<td>100 (2001-2003)112</td>
<td></td>
</tr>
</tbody>
</table>

* (continued)
Table 2. Levels of n-3 Fatty Acids and Contaminants in Commonly Consumed Fish, Shellfish, and Other Foods (cont)

<table>
<thead>
<tr>
<th></th>
<th>EPA + DHA, mg/serving (Serving Size)</th>
<th>EPA + DHA, mg/100 g (3.5 oz)</th>
<th>Selenium, µg/g (ppm)</th>
<th>Mercury, µg/g (ppm)</th>
<th>PCBs, ng/g (ppb)</th>
<th>Dioxins, TEQ pg/g (ppt‡)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shellfish</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clams</td>
<td>241 (3 oz)</td>
<td>284</td>
<td>0.64</td>
<td><0.05</td>
<td>3 (2001-2003)</td>
<td>0.05 (2001-2003)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2 (2002)</td>
<td>0.05 (2002)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.10 (1997-1998)</td>
</tr>
<tr>
<td>Crab</td>
<td>351 (3 oz)</td>
<td>413</td>
<td>0.40</td>
<td>0.09</td>
<td>6 (2002)</td>
<td>0.55 (2002)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.05 (1998)</td>
</tr>
<tr>
<td>Lobster</td>
<td>71 (3 oz)</td>
<td>84</td>
<td>0.43</td>
<td>0.31</td>
<td>0.69 (1998)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.12 (1997-1998)</td>
</tr>
<tr>
<td>Mussels</td>
<td>665 (3 oz)</td>
<td>782</td>
<td>0.90</td>
<td><0.15</td>
<td>7 (2001-2003)</td>
<td>0.09 (2001-2003)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.8 (2002)</td>
<td>0.11 (2002)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.39 (1998)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.45 (1996-1998)</td>
</tr>
<tr>
<td>Oysters</td>
<td>585 (3 oz)</td>
<td>688</td>
<td>0.77</td>
<td><0.05</td>
<td>17 (2001-2003)</td>
<td>0.46 (2001-2003)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.8 (2002)</td>
<td>0.19 (2002)</td>
</tr>
<tr>
<td>Scallops</td>
<td>310 (3 oz)</td>
<td>365</td>
<td>0.28</td>
<td><0.05</td>
<td>0.16 (1998)</td>
<td></td>
</tr>
<tr>
<td>Shrimp</td>
<td>267 (3 oz)</td>
<td>315</td>
<td>0.40</td>
<td><0.05</td>
<td>2 (2002)</td>
<td>0.06 (2002)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.2 (2002)</td>
<td>0.11 (2002)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.06 (2001)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.19 (1996-1997)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.08 (1996-1998)</td>
</tr>
<tr>
<td>Other Foods</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beef</td>
<td>0</td>
<td>0</td>
<td>0.19</td>
<td>0</td>
<td>22 (2001)</td>
<td>0.13 (2001)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.27 (1996)</td>
</tr>
<tr>
<td>Bologna</td>
<td>0</td>
<td>0</td>
<td>0.14</td>
<td>0</td>
<td>0.16 (2001)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.29 (1996)</td>
</tr>
<tr>
<td>Butter, regular</td>
<td>0</td>
<td>0</td>
<td><0.05</td>
<td>0</td>
<td>70 (2001)</td>
<td>0.22 (2001)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.31 (1996-1998)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.66 (1998)</td>
</tr>
<tr>
<td>Cheese</td>
<td>0</td>
<td>0</td>
<td>0.22</td>
<td>0</td>
<td>0.25 (2001)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.77 (1998)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.34 (1996)</td>
</tr>
<tr>
<td>Chicken</td>
<td>0</td>
<td>0</td>
<td>0.23</td>
<td>0</td>
<td>32 (2001)</td>
<td>0.02 (2001)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.20 (1996)</td>
</tr>
<tr>
<td>Eggs</td>
<td>22 (1 egg)</td>
<td>43</td>
<td>0.23</td>
<td>0</td>
<td>19 (2001)</td>
<td>0.05 (2001)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.52 (1998)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.31 (1996)</td>
</tr>
<tr>
<td>Milk, whole</td>
<td>0</td>
<td>0</td>
<td>0.02</td>
<td>0</td>
<td>0.01 (2001)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.12 (1996-1998)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.13 (1996)</td>
</tr>
<tr>
<td>Pork</td>
<td>0</td>
<td>0</td>
<td>0.34</td>
<td>0</td>
<td>18 (2001)</td>
<td>0.10 (2001)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.23 (1996)</td>
</tr>
</tbody>
</table>

Abbreviations: DHA, docosahexaenoic acid; EPA, eicosapentaenoic acid; FDA, US Food and Drug Administration; NA, not applicable; PCB, polychlorinated biphenyl; ppb, parts per billion; ppm, parts per million; ppt, parts per trillion; TEQ, toxic equivalence.

*Based on data from US Department of Agriculture (USDA), Food and Drug Administration (FDA), Environmental Protection Agency, and other sources.
These values may vary due to methodologic, geographic, temporal, and fish-to-fish differences. Levels of PCBs and dioxins may overestimate current levels because contaminant levels in most foods, including fish species, are decreasing over time (eg, TEQs decreased by 33%-81% in meats and 66%-77% in salmon and tuna fish between 1995 and 2003); year of sampling is given in parenthesis.
†Based on USDA serving sizes: 2 oz anchovies or sardines; 1 fillet catfish, cod, mackerel, mahimahi, snapper, or trout; ½ fillet halibut, king mackerel, pollock, or golden bass; 6 oz salmon; 3 oz herring, shark, shellfish, or tuna; 1 piece (0.75 oz) swordfish.
‡The sum of dibenzodioxins (PCDDs) + dibenzofurans (PCDFs) (nondetects = 1/2 LOD when multiple estimates available).
¶Due to numerous questions and uncertainties regarding scientific data on and analysis of dioxin risk.
#For the same specific species, there are minimal differences in nutritional or contaminant content of canned vs fresh salmon or tuna. However, different species are typically canned vs sold fresh. For salmon, differences between species are small compared with differences between farmed and wild salmon. For tuna, canned light (skipjack) tuna and fresh yellowfin/ahi tuna are more similar overall, while canned white (albacore) tuna and fresh bluefin tuna are more similar overall.
§Includes dioxin-like PCBs.
These exposure levels do not produce symptomatic neurodevelopmental deficits, but several prospective studies have evaluated whether subclinical effects, detectable with specialized testing, might occur. Among children from the Faroe Islands, New Zealand, and Poland, higher gestational exposure to mercury was associated with lower scores on some neurologic tests (eg, finger tapping, naming tests) but not others. In contrast, higher gestational exposure to mercury was associated with higher scores on some neurologic tests among Seychellois children. In a US cohort, gestational maternal fish intake was positively associated with, but mercury levels in hair were negatively associated with, visual recognition memory scores in infancy, indicating possible opposing effects of overall fish consumption (ie, providing DHA and methymercury exposure. In a British cohort, gestational maternal fish intake was positively associated with, but maternal and infant fish intake was associated with, improved neurodevelopmental scores. Other studies did not detect consistent associations between gestational exposure to mercury and neurologic test scores during childhood.

Comparisons across studies are limited by heterogeneity of study designs (prospective vs cross-sectional), mercury assessment methods, neurologic tests used, timing of assessment (infancy vs childhood), and statistical methods. Some analyses are also limited by multiple statistical testing (eg, ≥30 neurologic variables) or incomplete adjustment for other potential risk factors. Randomized trials to test effects of reducing low-level methylmercury exposure during gestation have not been performed. Nevertheless, given associations with some lower neurologic test scores in some studies, and clinical neurotoxicity of methylmercury following high-level accidental exposures, it is prudent to conclude that subclinical neurodevelopmental deficits may occur at lower exposure levels.

Based on this, the Environmental Protection Agency determined a reference dose, ie, the allowable upper limit of daily intake, for methylmercury of 0.1 µg/kg per day (≈50 µg/wk for a 70-kg woman), calculated from the lower 95% confidence limit at which gestational exposure to mercury may produce abnormal neurologic test scores, multiplied by a 10-fold uncertainty factor and published a focused advisory for women of childbearing age, nursing mothers, and young children. The advisory specifically advises such individuals to avoid shark, swordfish, golden bass, and king mackerel (each containing >50 µg methylmercury per serving) (Table 2); to eat up to 12 oz/wk (2 average meals) of a variety of fish and shellfish lower in mercury, including up to 6 oz/wk of albacore tuna (30 µg methylmercury per serving); and to consult local advisories for locally caught freshwater fish. This advisory was not intended for the general population, because the importance of this reference dose to health effects in adults was unclear. We review the evidence for such effects below.

Health Effects of Methylmercury in Adults

Cardiovascular Disease. Several studies have evaluated the relationship between mercury exposure and incidence of cardiovascular disease (Figure 5). The conflicting results provide inconclusive evidence for cardiovascular toxicity of mercury. Notably, in the 2 studies observing higher risk with higher mercury levels, the net effect of fish consumption was still beneficial: greater mercury exposure lessened the benefit associated with consumption of fish or n-3 PUFAs but did not increase overall risk. Thus, the principal question may not be whether consumption of mercury-containing fish increases cardiovascular risk but whether consumption of such fish would decrease risk even further if mercury were not present. This would be most true for oily fish species containing higher amounts of n-3 PUFAs (ie, most mercury-containing ocean fish), compared with lean freshwater fish. This is an important public health issue.
health issue, which requires balancing potentially attenuated benefits of fish intake due to presence of mercury with the costs and practicality of reducing mercury contamination in fish species. Nevertheless, this should not obscure evidence for net cardiovascular benefits of fish consumption, particularly fish richer in n-3 PUFAs.

Neurologic Outcomes. Very high methylmercury exposure from accidents (eg, Minamata) or prolonged high intakes of mercury-containing fish (eg, 1-2 fish servings/d, including species high in mercury, for >10 years) can produce sensorimotor symptoms in adults, most commonly paresthesias, which are often reversible when mercury exposure is reduced. Whether lower exposures produce neurologic abnormalities in adults is not clear. Cross-sectional studies have evaluated associations between mercury levels in hair or blood and subclinical neurologic function in adults. Among Amazon basin and Quebec Cree individuals, both positive and inverse associations were seen between mercury levels and some neurologic measures but findings were limited by minimal adjustment for other risk factors and multiple testing (typically ≥20-30 neurologic tests or participant subgroups). Among US adults, mercury levels were associated with lower visual memory scores (P = .01) but better motor and manual dexterity scores (P = .02) among 20 different outcomes evaluated. Among elderly Swedish adults, no associations were found between mercury levels and cognitive function. Thus, it is unclear whether low-level methylmercury affects subclinical neurologic outcomes in adults and, if so, what quantities or durations of exposure are necessary. Conversely, a growing body of evidence suggests that fish consumption may favorably affect clinical neurologic outcomes in adults, including ischemic stroke, cognitive decline and dementia, and depression and other neuropsychiatric disorders.

Possible Mercury-Selenium Interaction. Health effects of mercury may partly result from selenoprotein inactivation, which might be mitigated by adequate intake of selenium, an essential dietary trace element. Selenium also may reduce tissue accumulation of mercury in fish and humans. Seafood species are rich dietary sources of selenium. A protective effect of selenium may partly account for conflicting results of studies of mercury exposure and neurodevelopmental indices in children and of mercury exposure and risk of CHD. A potential selenium-mercury interaction would have important public health implications, and additional investigation is warranted.

Risks of PCBs and Dioxins
PCBs are synthetic organochlorine compounds previously used in industrial and commercial processes. Dioxins—commonly referring to dibenzodioxins and dibenzofurans—are organochlorine by-products of waste incineration, paper bleaching, pesticide production, and production of polyvinyl chloride plastics. Manufacture and processing of PCBs was prohibited in 1977 and regulatory and industry efforts have reduced dioxin emissions by more than 90% since 1987. Nevertheless, these contaminants persist for long periods in the environment, and thus while levels are steadily declining, PCBs and dioxins continue to be present in low concentrations in many foods (Table 2).

Cancer Risks. Animal experiments and some evidence in humans indicate that PCBs and dioxins are carcinogenic, possibly related to effects on the aryl hydrocarbon receptor, a transcription factor affecting gene expression. Multiple congeners (structural variants) of PCBs and dioxins exist. Potential toxicities of foods are calculated using toxic equivalence (TEQ): the sum of each congener’s level in the food multiplied by that congener’s toxic equivalency factor (standardized against 2,3,7,8-tetrachlorodibenzo-p-dioxin). In the United States, PCBs comprise 28% and dioxins 72% of total TEQ exposure. Among adults, major dietary sources of PCBs and dioxins are beef, chicken, and pork (34% of total TEQ); dairy products (30%); vegetables (22%); fish and shellfish (9%); and eggs (5%). Dietary sources are similar for children.

Although major sources of exposure to PCBs and dioxins are meats, dairy products, and vegetables, considerable attention has been given to fish sources (Table 2). When PCBs and dioxins were measured in farmed and wild salmon, levels were similar to those in several other foods (Table 2). Farmed and wild salmon also contained substantial levels of n-3 PUFAs: 4504 and 1774 mg of EPA and DHA per 6 oz, respectively. Cancer risks and CHD benefits were evaluated in a quantitative risk-benefit analysis, assuming regular farmed or wild salmon intake to provide 1000 mg/d of EPA and DHA over a 70-year lifetime. For 100 000 individuals, consumption of farmed vs wild salmon would result in 24 vs 8 excess cancer deaths, respectively, while consumption of either farmed or wild salmon would result in 7125 fewer CHD deaths. We further evaluated age-specific estimates, based on allocation of lifetime cancer risks (adjusted for competing risks) by age-specific cancer mortality and 25% reduction in age-specific CHD mortality. For all ages evaluated (25-34 to ≥85 years), CHD benefits outweighed cancer risks by 100- to 370-fold for farmed salmon and by 300- to more than 1000-fold for wild salmon.

Notably, estimated CHD benefits are based on prospective studies and randomized trials in humans (Figures 1 and 2); estimated cancer risks include a 10-fold safety factor and are based on animal-experimental data and limited studies in humans at high doses. Cancer estimates also assumed lifetime salmon consumption to provide 1000 mg/d of EPA and DHA (eg, four 6-oz servings of wild salmon every week for 70 years). However, CHD mortality reduction may be achieved with lower intake: ≥250 mg/d (Figures 1 and 2), or one 6-oz wild salmon serving per week. At this intake, CHD benefits would be
largely unchanged (≈7125 fewer CHD deaths), while lifetime cancer risk would decrease by ≈75% (6 and 2 estimated deaths per 100 000 lifetimes for farmed and wild salmon, respectively). Consistent with these very low cancer risks, prospective studies in humans have seen little evidence for effects of fish intake on cancer risk.170

Other Risks. PCBs and dioxins may have noncancer risks in adults, such as immune system or neurologic effects.22-24 Conversely, fish consumption may also have other benefits, possibly lowering risk of other cardiovascular outcomes (Table 1), dementia,40 neuropsychiatric disorders,41,42 and inflammatory disorders.43,44 If present, such additional possible risks would have to exceed additional possible benefits by more than 100-fold to meaningfully alter the present estimates of risks vs benefits. PCB content in fish can be reduced 12% to 40% by trimming belly and back fat during filleting and by not consuming the skin.130 Also, contaminant levels are typically measured in unprepared foods, and cooking may reduce PCB and dioxin content.106

Prenatal (but not postnatal) exposure to PCBs and dioxins has been associated with childhood neurodevelopmental deficits in several,171-177 though not all,178,179 studies. Because most exposure (>90%) generally comes from meat, dairy, and vegetable sources,120,187 this concern is not specific to fish consumption, particularly since fish also contains potentially beneficial DHA. However, women consuming 1 or more servings/d of commercial freshwater fish or consuming locally caught freshwater fish from highly contaminated inland sources may be more greatly exposed to PCBs and dioxins180 and should consult regional advisories.

Related Considerations
Costs. We evaluated potential costs of consuming 250 mg/d of EPA and DHA from fish (FIGURE 6). The daily cost was as low as 9 cents, or 63 cents/wk. For combinations of different types of salmon; salmon and tuna; or salmon, tuna, anchovies, and sardines, the average cost was 37 cents/d ($2.59/wk) or less. Actual (net) costs would be lower because intake of fish would replace intake of other foods.

Supplements. Fish oil capsules contain 20% to 80% of EPA and DHA by weight (200-800 mg/g185,186), little to no mercury,187 and variable levels of PCBs (0-450 ng/g,116,188) and dioxins (0.2-11 TEQ pg/g116,188). Given small amounts of fish oil consumed (1-3 g/d), exposure to PCBs and dioxins from fish oil intake is low. “Functional foods” supplemented with EPA and DHA (eg, dairy products, salad dressings, cereals) can also provide reasonable intake to individuals not consuming seafood.190 Compared with supplements, fish intake also provides potential beneficial protein, vitamin D, and selenium.121

Commercial Preparation. Commercially-prepared fried fish meals from fast food restaurants or supermarket frozen sections123,124 are often made using white-meat fish (lower in n-3 PUFAs)27,125 and prepared with partially hydrogenated oils (containing trans fats) or oils reused for multiple frying cycles (introducing oxidative/deteriorative products191). Higher cardiovascular risk seen with fried fish intake15,54,63,66 may relate to this unfavorable balance of benefit vs harm (lower levels of EPA and DHA; higher levels of trans fats/deteriorative products) or to residual confounding from other lifestyle factors. While further research is needed, it appears unlikely that most commercially prepared fried fish meals lower cardiovascular risk.

n6:n3 Ratio. Ecologic studies and limited animal-experimental data suggest that linoleic acid (18:2n-6) may counteract potential benefits of n-3 fatty acids,192,193 but this hypothesis has not been supported by clinical trials or prospective studies in humans.16,194 A much greater change in the dietary ratio of n-6 fatty acids to n-3 fatty acids can be practically achieved by increasing intake of n-3s (eg, going from no intake of oily fish to 1 serving/wk) compared with lowering intake of n-6s (which are widely consumed in cooking oils, salad dressings, and prepared foods). Thus, for most populations, attention to relative intakes of n-6 vs n-3 fatty acids may be less important than simply increasing n-3 intake.

Aquaculture. Concerns exist about sustainability of some aquaculture and...
commercial fishing practices. Conversely, aquaculture contributes to global fish production, and sustainability concerns are not unique to aquaculture or fishing but also exist for agricultural, forestry, freshwater, atmospheric, and energy resources. Some progress has been made, such as changes in fish feeds to reduce dependence on fish meal or oil. Given the importance of n-3 PUFAs for health, balance must be achieved between environmental and economic concerns to allow sustainable, financially viable aquaculture and commercial fishing.

Plant Sources. Alpha-linolenic acid (ALA) (18:3n-3) is an n-3 fatty acid present in flaxseed, canola, soybeans, and walnuts. In humans, ALA is converted to EPA in small quantities (in women more than men); further conversion to DHA is very limited. Consumption of ALA (eg, 2-3 g/d) may reduce cardiovascular risk or affect neurodevelopment, but benefits are less established compared with those for EPA and DHA.

Optimal Intakes

Optimal intake of n-3 PUFAs may vary depending on population and outcome of interest. In the general population, 250 mg/d of EPA and DHA is a reasonable target intake to reduce CHD mortality. Because dietary n-3 PUFAs persist for weeks in tissue membranes, this can be converted to a weekly intake of \(\approx 1500-2000 \text{ mg} \). This corresponds to one 6-oz serving/wk of wild salmon or similar oily fish, or more frequent intake of smaller or less n-3 PUFA–rich servings (Table 2). For individuals with CHD, 1000 mg/d of EPA and DHA is currently recommended to reduce CHD mortality.

Our analysis suggests that lower doses may be sufficient, but given this population’s higher risk and that most data are from primary prevention studies, a target intake of 500 to 1000 mg/d—consistent with the largest secondary prevention trial to date—appears reasonable. This could be approximated by one 6-oz serving/wk of fish richest in n-3 PUFAs (eg, farmed salmon, anchovies, herring), more frequent consumption of other fish (Table 2), or supplements. Optimal intake levels for other clinical outcomes are not well established.

The effects, if any, of low-level methylmercury exposure in adults are not established; mercury may modestly reduce the cardiovascular benefits of fish intake. One can minimize concerns by choosing fish higher in n-3 PUFAs and lower in mercury or by simply consuming a variety of different seafood. Individuals with high consumption (>5 servings/wk) should limit intake of selected species highest in mercury (Table 2). DHA appears important for early neurodevelopment. Women who are or may become pregnant and nursing mothers should avoid selected species (shark, swordfish, golden bass, and king mackerel; locally caught fish per local advisories) and limit intake of albacore tuna (6 oz/wk) to minimize methylmercury exposure. However, emphasis must also be placed on adequate consumption—12 oz/wk—of other fish and shellfish to provide reasonable amounts of DHA and avoid further decreases in already low seafood intake among women (74% of women of childbearing age and 85% of pregnant women consume <6 oz/wk).

Continued efforts to limit environmental contamination from organochlorine compounds are appropriate. However, levels of PCBs and dioxins in fish are low, similar to those in several other foods, and the magnitudes of possible risks in adults are greatly exceeded by benefits of fish intake and should have little impact on individual decisions regarding fish consumption (for locally caught freshwater fish, women of childbearing age should consult regional advisories).
15. Mozaffarian D, Lemaitre RN, Kuller LH, Burke GL, Tracy RP, Siscovick DS. Cardiac benefits of fish consumption; November 17, 2005; Dallas, Tex. presented at: American Heart Association Scientific Sessions.
FISH INTAKE, CONTAMINANTS, AND HUMAN HEALTH

72. Mozaffarian D, Gotteni JS, Siscovick DS. Intake of tuna or other broiled or baked fish vs. fried fish and cardiac structure, function, and hemodynamics. Am J Cardiol. 2005;96:214-222.

©2006 American Medical Association. All rights reserved.
FISH INTAKE, CONTAMINANTS, AND HUMAN HEALTH

ton, DC: US Environmental Protection Agency; 2005.

122. US Department of Health and Human Services; US Environ-

123. Shim SM, Lasrado JA, Dorworth LE, Santerre CR. Mer-

ment of Agriculture. Dioxins and dioxin-like com-

126. Rice DC. The US EPA reference dose for methyl-

127. Ahlgqvist M, Bengtsson C, Lapidus L, Gerdragh IA, Schutz A. Serum mercury concentration in rel-
a tion to symptoms, and diseases: results from the prospec-
tive population study of women in Gothen-
burg, Sweden. Acta Odontol Scand. 1999;57:168-
174.

133. Rissanen T, Voutilainen S, Nyyssonen K, Lakka TA, Salonen JT. Fish oil-derived fatty acids, docosa-

134. Rishef JF, Murray HE, Prince GR. Organic mer-

135. Rishef JF. Too much of a good thing (fish): me-

tive deficit in 7-year-old children with prenatal expo-

140. Nakajima S, Saijo Y, Kato S, et al. Effects of pre-

havioral deficits associated with PCB in 7-year-old chil-
dren prenatally exposed to seafood neurotoxicants. Acta Neu-
rologica Scand. 2002;106:537-546.

145. National Center for Environmental Assessment, US Environmental Protection Agency. PCBs: cancer dose-
response assessment and application to environment.

146. Hamilton MC, Hites RA, Schwager SJ, Foran JA, Knuth BA, Carpenter DO. Lipid composition and contamina-

148. Daniels JL, Longnecker MP, Klebanoff MA, et al. Association between prenatal exposure to polychlorinated benzenes (PCBs), and neurological develop-

149. Stewart PW, Reihman J, Lonky EI, Darvill TJ, Pa-
ghan. Cognitive development in preschool children pre-
natally exposed to PCBs and MeHg. Neurotoxicolog-

150. Schantz SL, Wilholm J, Rice DC. Effects of PCB exposure on neuropsychological function in children. En-

natal exposure to polychlorinated biphenyls and diox-
in on mental and motor development in Japanese chil-

152. Daniels JL, Longnecker MP, Klebanoff MA, et al. Prenatal exposure to low-level polychlorinated biphenyls and diox-

1898 JAMA, October 18, 2006—Vol 296, No. 15 (Reprinted)

©2006 American Medical Association. All rights reserved.
exposure to background levels of polychlorinated bi-
phenyls and cognitive functioning among school-age
180. Judd N, Griffith WC, Faustman EM. Contribu-
tion of PCB exposure from fish consumption to total di-
http://www.great-alaska-seafood.com/fresh-alaska-
salmon.htm#alaska-king-salmon. Accessed July 11,
2006.
185. Chee KM, Gong JX, Rees DM, et al. Fatty acid con-
186. Center for Drug Evaluation and Research, US Food
And Drug Administration. Omacor: consumer drug in-
CenterforDrulabel/2004/216541blf.pdf. Accessed April 5,
2006.
187. Foran SE, Flood JG, Lewandrowski KB. Measure-
ment of mercury levels in concentrated over-the-
counter fish oil preparations: is fish oil healthier than fish?
188. Storelli MM, Storelli A, Marcotrigiano GO. Poly-
chlorinated biphenyls, hexachlorobenzene, hexachlo-
roxybenzene isomers, and pesticide organochlorine resi-
dues in cod-liver oil dietary supplements. J Food Prot.
2004;67:1787-1791.
189. Jimenez B, Wright C, Kelly M, Starlin JR. Levels of
PCDDs, PCDFs and non-ortho PCBs in dietary supple-
ment fish oil obtained in Spain. Chemosphere. 1996;32:
461-467.
190. Patch CS, Tappell LC, Mori TA, et al. The use of
novel foods enriched with long-chain n-3 fatty acids to
increase dietary intake: a comparison of methodolo-
gies assessing nutrient intake. J Am Diet Assoc. 2005;105:
1918-1926.
191. Warner K. Impact of high-temperature food pro-
67-77.
192. Simopoulos AP. Essential fatty acids in health
193. Kris-Etherton PM, Taylor DS, Yu-Poth S, et al. Poly-
unsaturated fatty acids in the food chain in the United
States. Am J Clin Nutr. 2000;71:1795-
1885.
194. Hu FB, Stampfer MJ, Manson JE, et al. Dietary in-
take of alpha-linolenic acid and risk of fatal ischemic heart
897.
of aquaculture on world fish supplies. Nature. 2000;405:
1017-1024.
fisheries: impacts on marine ecosystems and food
9-12.
197. Devine JA, Baker KD, Haedrich RL. Fisheries: deep-
198. National Marine Fisheries Service. Fisheries of the
United States, 1999-2000. Silver Spring, Md: US Dept of Com-
merce; 2005.
199. Garcia SM, Grainger RJ. Gloom and doom? the
future of marine capture fisheries. Philos Trans R Soc
200. World Resources Institute. Millennium Ecosys-
tem Assessment: Ecosystems and Human Well-Being—
2005.
201. Williams CM, Burdge G. Long-chain n-3 PUFA:
plant v. marine sources. Proc Nutr Soc. 2006;65:
42-50.
202. Mozaffarian D. Does alpha-linolenic acid intake
reduce the risk of coronary heart disease? a review of
the evidence. Altern Ther Med. 2005;11:24-30,
31, 79.
in the fatty acid composition of erythrocyte mem-
branes after moderate intake of n-3 polyunsaturated fatty
54:668-673.
204. Kris-Etherton PM, Harris WS, Appel LJ. Fish
consumption, fish oil, omega-3 fatty acids, and
cardiovascular disease. Circulation. 2002;106:2747-
2757.
205. Van de Werf F, Ardissino D, Betriu A, et al; Task
Force on the Management of Acute Myocardial Infarc-
tion of the European Society of Cardiology. Manage-
ment of acute myocardial infarction in patients present-
ing with ST-segment elevation. Eur Heart J. 2003;24:28-
66.
206. Schober SE, Sinks TH, Jones RL, et al. Blood mer-
curry levels in US children and women of childbearing
207. Oken E, Kleinman KP, Berland WE, Simon SR,
Rich-Edwards JW, Gillman MW. Decline in fish
consumption among pregnant women after a national

Author in the Room Teleconference
Join Dr Mozaffarian, an author of this article, on Wednesday,
November 15, 2006, from 2 to 3 PM EDT for “Author in the Room,”
an interactive teleconference aimed at closing the gap between
knowledge—what is published in this article—and action—how
much of this knowledge can be put into your actual practice. This
teleconference, facilitated by clinical experts, should help readers
answer their questions and consider the implications of the article
for their practice.

Author in the Room is brought to you by JAMA and the Institute
for Healthcare Improvement. To register for “Author in the Room,”
please visit http://www.ihi.org/authorintheroom. You can listen
to past conferences or to subscribe to the podcast at http://jama.
ama-assn.org/authorintheroom/authorindex.dtl.

©2006 American Medical Association. All rights reserved.
(Reprinted) JAMA, October 18, 2006—Vol 296, No. 15 1899
prevented the development of protective immunity. In another murine model, protective immunity was also inhibited by azithromycin. Brunham et al observed that while chlamydial sexually transmitted infections in Vancouver decreased substantially over a few years after an azithromycin treatment program began, they estimated that annual risk of re-infection increased by 4.6% thereafter.

Personal hygiene and environmental improvements have already eliminated blinding trachoma in developed and some developing countries. Emphasis should be placed on all SAFE components with further evaluation of the antibiotic component, longitudinal assessments of efficacy, and vaccine development for sustainability.

Deborah Dean, MD, MPH
ddean@chori.org

Berna Atik, MD, MPH
Center for Immunobiology and Vaccine Development
Children’s Hospital Oakland Research Institute
Oakland, Calif

Ton Thi Kim Thanh, MD
Vu Quoc Luong, MD, PhD
National Institute of Ophthalmology
Ministry of Health
Stephan Lagree, PhD
Group Research in Technology Exchange
Hanoi, Vietnam

Financial Disclosures: None reported.

CORRECTIONS

Citation Error: In the Original Contribution entitled “Impact of Annual Targeted Treatment on Infectious Trachoma and Susceptibility to Reinfection” published in the September 27, 2006, issue of JAMA (2006;296:1488-1497) page 1493 contained an error in the use of a citation. The sentence “Since the duration of C. trachomatis infection is usually sustained for only 1 to 4 months,” we reasoned that individuals with resolved infection (conversion of PCR-positive result to negative at a subsequent time point) would be susceptible to infection at the next time point, 6 months later” should read “Since the duration of C. trachomatis infection is reduced in older age groups, presumably as a result of acquired immunity,” we reasoned that if the immune response is usually sustained for only 1 to 4 months, individuals with resolved infection (conversion of PCR-positive result to negative at a subsequent time point) would be susceptible to infection at the next time point, 6 months later.”

Omitted Financial Disclosure Information: In the Clinical Review entitled “Fish Intake, Contaminants, and Human Health” published in the October 18, 2006 issue of JAMA (2006;296:1885-1899), financial disclosure information was omitted. The disclosure for Dr Mozaffarian should have read: Dr Mozaffarian reported that he has received honoraria for presentations or articles about fish or trans fat consumption & cardiovascular health from the Institute of Food Technologists, the Danish Nutrition Council, the American Oil Chemists’ Society, Project Syndicate, and several academic medical centers.