Biblio
Found 116 results
Author Title Type [ Year] Filters: Keyword is Zebrafish and Author is Tanguay, Robert L [Clear All Filters]
“Nicotinic receptors mediate changes in spinal motoneuron development and axonal pathfinding in embryonic zebrafish exposed to nicotine.”, J Neurosci, vol. 22, no. 24, pp. 10731-41, 2002.
, “Tissue-specific expression of AHR2, ARNT2, and CYP1A in zebrafish embryos and larvae: effects of developmental stage and 2,3,7,8-tetrachlorodibenzo-p-dioxin exposure.”, Toxicol Sci, vol. 68, no. 2, pp. 403-19, 2002.
, “Tissue-specific expression of AHR2, ARNT2, and CYP1A in zebrafish embryos and larvae: effects of developmental stage and 2,3,7,8-tetrachlorodibenzo-p-dioxin exposure.”, Toxicol Sci, vol. 68, no. 2, pp. 403-19, 2002.
, “The zebrafish (Danio rerio) aryl hydrocarbon receptor type 1 is a novel vertebrate receptor.”, Mol Pharmacol, vol. 62, no. 2, pp. 234-49, 2002.
, “2,3,7,8-tetrachlorodibenzo-p-dioxin inhibits zebrafish caudal fin regeneration.”, Toxicol Sci, vol. 76, no. 1, pp. 151-61, 2003.
, “Identification of a putative calcium-binding protein as a dioxin-responsive gene in zebrafish and rainbow trout.”, Aquat Toxicol, vol. 63, no. 3, pp. 271-82, 2003.
, “Developmental toxicity of the dithiocarbamate pesticide sodium metam in zebrafish.”, Toxicol Sci, vol. 81, no. 2, pp. 390-400, 2004.
, “Ethanol- and acetaldehyde-mediated developmental toxicity in zebrafish.”, Neurotoxicol Teratol, vol. 26, no. 6, pp. 769-81, 2004.
, “Histological analysis of acute toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in zebrafish.”, Aquat Toxicol, vol. 66, no. 1, pp. 25-38, 2004.
, “Two zebrafish alcohol dehydrogenases share common ancestry with mammalian class I, II, IV, and V alcohol dehydrogenase genes but have distinct functional characteristics.”, J Biol Chem, vol. 279, no. 37, pp. 38303-12, 2004.
, “Molecular cloning, baculovirus expression, and tissue distribution of the zebrafish aldehyde dehydrogenase 2.”, Drug Metab Dispos, vol. 33, no. 5, pp. 649-56, 2005.
, “Aryl hydrocarbon receptor activation inhibits regenerative growth.”, Mol Pharmacol, vol. 69, no. 1, pp. 257-65, 2006.
, “Dithiocarbamates have a common toxic effect on zebrafish body axis formation.”, Toxicol Appl Pharmacol, vol. 216, no. 1, pp. 55-68, 2006.
, “Ethanol-dependent toxicity in zebrafish is partially attenuated by antioxidants.”, Neurotoxicol Teratol, vol. 28, no. 4, pp. 497-508, 2006.
, “Identification of zebrafish ARNT1 homologs: 2,3,7,8-tetrachlorodibenzo-p-dioxin toxicity in the developing zebrafish requires ARNT1.”, Mol Pharmacol, vol. 69, no. 3, pp. 776-87, 2006.
, “Muscular contractions in the zebrafish embryo are necessary to reveal thiuram-induced notochord distortions.”, Toxicol Appl Pharmacol, vol. 212, no. 1, pp. 24-34, 2006.
, “Regenerative growth is impacted by TCDD: gene expression analysis reveals extracellular matrix modulation.”, Toxicol Sci, vol. 92, no. 1, pp. 254-69, 2006.
, “Aryl hydrocarbon receptor activation impairs extracellular matrix remodeling during zebra fish fin regeneration.”, Toxicol Sci, vol. 95, no. 1, pp. 215-26, 2007.
, “Quantification of fullerenes by LC/ESI-MS and its application to in vivo toxicity assays.”, Anal Chem, vol. 79, no. 23, pp. 9091-7, 2007.
, “Unraveling tissue regeneration pathways using chemical genetics.”, J Biol Chem, vol. 282, no. 48, pp. 35202-10, 2007.
, “Analysis of ethanol developmental toxicity in zebrafish.”, Methods Mol Biol, vol. 447, pp. 63-74, 2008.
, “Crosstalk between AHR and Wnt signaling through R-Spondin1 impairs tissue regeneration in zebrafish.”, FASEB J, vol. 22, no. 8, pp. 3087-96, 2008.
, “Exposure to sodium metam during zebrafish somitogenesis results in early transcriptional indicators of the ensuing neuronal and muscular dysfunction.”, Toxicol Sci, vol. 106, no. 1, pp. 103-12, 2008.
, “Fullerene C60 exposure elicits an oxidative stress response in embryonic zebrafish.”, Toxicol Appl Pharmacol, vol. 229, no. 1, pp. 44-55, 2008.
, “Repression of aryl hydrocarbon receptor (AHR) signaling by AHR repressor: role of DNA binding and competition for AHR nuclear translocator.”, Mol Pharmacol, vol. 73, no. 2, pp. 387-98, 2008.
,