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• Exotic annual grasses promoted a grass-
fire cycle in the northern Great Basin.

• NPP by plant traits was highly associated
to litter biomass in sagebrush rangelands.

• The extrapolation of litter biomass model
over time featured a reasonable accuracy.

• Short times since last wildfire promoted
litter accumulation feedbacks.
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Exotic annual grasses invasion across northern Great Basin rangelands has promoted a grass-fire cycle that threatens
the sagebrush (Artemisia spp.) steppe ecosystem. In this sense, high accumulation rates and persistence of litter from
annual species largely increase the amount and continuity of fine fuels. Here, we highlight the potential use and trans-
ferability of remote sensing-derived products to estimate litter biomass on sagebrush rangelands in southeastern Ore-
gon, and link fire regime attributes (fire-free period) with litter biomass spatial patterns at the landscape scale. Every
June, from 2018 to 2021, we measured litter biomass in 24 field plots (60 m × 60 m). Two remote sensing-derived
datasets were used to predict litter biomass measured in the field plots. The first dataset used was the 30-m annual
net primary production (NPP) product partitioned into plant functional traits (annual grass, perennial grass, shrub,
ecnologias Agroambientais e Biológicas, Universidade de Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal.
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and tree) from the Rangeland Analysis Platform (RAP). The second dataset included topographic variables (heat load
index -HLI- and site exposure index -SEI-) computed from the USGS 30-m National Elevation Dataset. Through a
frequentist model averaging approach (FMA), we determined that the NPP of annual and perennial grasses, as well
as HLI and SEI, were important predictors of field-measured litter biomass in 2018, with the model featuring a high
overall fit (R2 = 0.61). Model transferability based on extrapolating the FMA predictive relationships from 2018 to
the following years provided similar overall fits (R2 ≈ 0.5). The fire-free period had a significant effect on the litter
biomass accumulation on rangelands within the study site, with greater litter biomass in areas where the fire-free pe-
riodwas<10 years. Ourfindings suggest that the proposed remote sensing-derived products could be a key instrument
to equip rangeland managers with additional information towards fuel management, fire management, and restora-
tion efforts.
1. Introduction

Global rangelands represent approximately half of the terrestrial land
surface, including grasslands, savannas, and shrub steppe ecosystems
(Gilmanov et al., 2004; Wilmer et al., 2020). Besides their support as a
food resource for wildlife and livestock (Selemani, 2020), these ecosystems
provide key services like carbon sequestration (Henderson et al., 2015), ac-
counting for 30 % of the global carbon pool (Briske et al., 2020), supply of
fuelwood (Scheiter et al., 2019), soil conservation (Mousavi et al., 2020),
and biodiversity support (Boone et al., 2018).

Among the rangelands of the Great Basin in the western United States
(U.S.), the sagebrush (Artemisia spp.) steppe is one of the most widely
distributed vegetation alliances (Davies et al., 2006; Davies and Bates,
2010). Yet, the sagebrush ecosystem in this region is threatened with
surface area losses of approximately 45 % with respect to the historical
distribution (Miller et al., 2011). In areas where the soil is warmer and pre-
cipitation is scarce, typically associated with lower elevations, wildfire is
considered a primary threat to the sagebrush steppe and is associated
with the invasion and dominance of exotic annual grasses (Whisenant,
1990; D'Antonio and Vitousek, 1992; Chambers et al., 2014). Under histor-
ical fire disturbance regimes, wildfires were relatively infrequent in these
landscapes, with fire return intervals ranging from decades to centuries
(Mensing et al., 2006; Bukowski and Baker, 2013). In this sense, the non-
invaded sagebrush steppe was fuel-limited compared to current plant
communities, which may be attributed to less fuel load, reduced fuel
continuity, and higher moisture in non-invaded shrub-bunchgrass plant
communities (Davies and Nafus, 2013; Reisner et al., 2013).

Today, exotic annual grasses -such as cheatgrass (Bromus tectorum
Huds.) and medusahead (Taeniatherum caput-medusae [L.] Nevski)- pro-
mote a grass-fire cycle that perpetuates exotic annual grass encroachment
and dominance (Brooks et al., 2004). Consequently, the resilience of native
sagebrush and perennial herbaceous species to altered fire disturbance re-
gimes is low, as is its resistance to invasion (Chambers et al., 2014), primar-
ily due to advantageous life history traits of exotic annual grasses. These
traits include early germination and seedling emergence from fall to spring
(Reynolds et al., 2001), improved growth rates in nutrient-poor soils
(James et al., 2011), and a high production rate of viable seeds (Pilliod
et al., 2017). The rapid establishment, growth and reproductive capacity
of annual grass species enable them to vigorously compete with native pe-
rennial species in the early growing season, competitively displacing them
(Nasri and Doescher, 1995; Rafferty and Young, 2002; Humphrey and
Schupp, 2004).

The summer post-fire environments across the Great Basin, usually with
low precipitation, create evenmore favorable conditions for the recovery of
annual grasses as compared to native perennial herbs and shrubs (Smith
et al., 2022a). Furthermore, these environments foster the steady degrada-
tion of sagebrush ecosystems, particularly after repeated wildfires in the
context of global change (Abatzoglou and Kolden, 2011; Brummer et al.,
2016). Ultimately, this land cover transition may involve shifts in ecosys-
tem functions and services, such as nutrient cycling and water regulation
(Wilcox et al., 2012; Chambers et al., 2014). As annual grass litter accumu-
lates, themicroenvironment for the establishment of these species is further
improved (Evans and Young, 1970; Facelli and Pickett, 1991; Newingham
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et al., 2007; Wolkovich et al., 2009), favoring feedback within the annual
grass-fire cycle. The low decomposition rate of litter from annual species fa-
vors its accumulation throughout the landscape over several years (Davies
and Svejcar, 2008), further increasing the amount, continuity, and flamma-
bility of fine fuels (Pilliod et al., 2017). Despite evidence that litter biomass
distribution in annual grass-invaded communities canmitigate wildfire risk
and inform adaptive management strategies (Stephenson et al., 2022;
Smith et al., 2022b), there remains a paucity of spatially-explicit methods.
In general, litter biomass is viewed as an understudied component of the
fuel complex in the northern Great Basin (Pilliod et al., 2017).

The extensive sagebrush steppe ecosystem is monitored in relatively
few local locations with field sampling usually associated with restoration
or research purposes. While litter biomass can be accurately estimated in
the field at plot scales, it is not feasible for land managers to either capture
rangeland spatial heterogeneity (Applestein and Germino, 2022; Kearney
et al., 2022) or provide spatially-explicit estimates (Fernández-Guisuraga
et al., 2022a) on these vast landscapes. In this context, new remote
sensing-derived products at a moderate spatial resolution (~30 m), like
the net primary production (NPP) product (Jones et al., 2021) from the
Rangeland Analysis Platform (RAP), offer a reliable way to accomplish
these goals. The NPP is a direct proxy for litter biomass (Clark et al.,
2001a) and RAP provides annual NPP estimates partitioned into plant
functional types (PFT). It combines a fractional cover dataset (Allred
et al., 2021) with a Landsat-derived NPP model (Robinson et al., 2018) to
account for within-pixel mixed land cover in heterogeneous rangelands
(Robinson et al., 2019). While RAP provides a litter cover product derived
from Landsat surface reflectance and field data (Allred et al., 2021), esti-
mating litter as ground percentage cover may not capture changes in the
litter layer thickness and load. That prediction remains unexplored to
date and is an important driver of wildfire behavior (Davies et al.,
2021a). In addition, topographic/environmental indices, as well as abiotic
indices, both computed from geospatial layers -such as the USGS 30 m
National Elevation Dataset (Gesch et al., 2002)- have strong potential
for mapping species composition and productivity (Iverson et al., 1997;
Davies et al., 2007; Davies et al., 2010a), and thus for litter biomass
estimation.

The potential of these remote sensing-derived products for mapping lit-
ter biomass has not been considered in the rangeland literature, particularly
in sagebrush ecosystems of the northern Great Basin threatened by chang-
ing fire regimes promoted by invasive grass-fire cycles. In this paper, we
(i) evaluate the potential of remote sensing-derived products (NPP
partitioned in rangeland plant functional types and topographic indices)
to estimate litter biomass in a sagebrush steppe ecosystem in southeastern
Oregon (northern Great Basin); (ii) assess the transferability of the predic-
tive relationships between different time periods because of the importance
of attaining transferable ecological models (Fernández-Guisuraga et al.,
2019); and (iii) link fire regime attributes with the spatial patterns of pre-
dicted litter biomass at a landscape scale by extrapolating the model to
about 800,000 ha of rangeland ecosystems in southeastern Oregon. We
hypothesized that increased litter biomass accumulation driven by annual
invasive species would promote the fine-fuel complex and the feedbacks as-
sociated with short fire-free periods in rangeland ecosystems (Davies and
Svejcar, 2008; Pilliod et al., 2017).
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2. Materials and methods

2.1. Study site and field experimental design

The study site was in southeastern Oregon (Malheur County) within the
Owyhee watershed (7670 km2; Fig. 1). Site elevation ranged from 787m to
1986m above sea level, with slopes between 0% and 150%. The climate is
cold semi-arid (Köppen-Geiger climate classification BSk; Kottek et al.,
2006), with mean annual temperature and precipitation, for a 30-year
period (1991–2020), of 8.9 °C and 315 mm, respectively (PRISM, 2022).
Soils are classified by the harmonized World Soil Database as Haplic
Xerosols (Xh) and Luvic Kastanozems (Kl) (Nachtergaele et al., 2010).
The study site is dominated byWyoming big sagebrush (Artemisia tridentata
Nutt. subsp. wyomingensis Beetle& Young) steppe communities invaded by
two exotic annual grasses–cheatgrass (Bromus tectorum Huds) and
Fig. 1. Location of the study site in southeastern Oregon (OR) within the Owyhe
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medusahead (Taeniatherum caput-medusae [L.] Nevski). Other native shrubs
included rubber rabbitbrush (Ericameria nauseosa [Pall. ex Pursh] G.L.
Nesom & Baird) and antelope bitterbrush (Purshia tridentata [Pursh] DC.).
The most abundant perennial grasses include Thurber's needlegrass
(Achnatherum thurberianum [Piper] Barkworth), bluebunch wheatgrass
(Pseudoroegneria spicata [Pursh] A. Löve), prairie Junegrass (Koeleria
macrantha [Ledeb.] J.A. Schultes), bottlebrush squirreltail (Elymus
elymoides [Raf.] Swezey), and Sandberg bluegrass (Poa secunda J. Presl).

Thirty-five percent of the study site (around 2700 km2) has been
affected by one or more wildfires in the last 38-years. Of these burned
areas, 68 % feature a fire-free period or time since the last wildfire
(TSLF)≤ 20 years, and 40% exhibit a TSLF≤ 10 years.Most of the surface
of the study site burned in the last 38 years has been affected by a single
wildfire (67 %), while 9.36 % of these areas have been affected by 3 or
more wildfires.
e watershed, and area where experimental field plots have been established.



Table 1
Litter biomass predictors considered in the frequentist model averaging approach
(FMA).

Product Predictor Reference

30-m annual NPP product Annual herbs NPPa Jones et al., 2021
Perennial herbs NPPa

Shrub NPPa

Tree NPPa

Topographic variables Heat load index (HLI) McCune and Keon, 2002
Site exposure index (SEI) Balice et al., 2000

a Predictor variables with a one-year time lag.
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In June 2018, 24 plots of 60 m × 60 m were established in the field
within the northeast section of the study site (Fig. 1). The location of the
field plots was determined using a sub-centimeter accuracy real-time kine-
matic (RTK) GPS receiver.

The field plots were surveyed in June 2018, 2019, 2020, and 2021 to
collect aboveground litter biomass of shrub and grass species. Within
each plot, we established 15 quadrats of 0.5 m× 0.4 m placed at 10-m in-
tervals along three parallel 50 m transects spaced 25m apart. The detached
plant litter accumulated on the soil surface was collected within each quad-
rat and transferred to the laboratory for analysis. The litter samples were
cleaned of remaining soil particles from field collection and then oven
dried at 60 °C for 48 h. Dry litter biomass was then weighed and averaged
over each 60 m × 60 m plot.

2.2. Vegetation, topographic variables, and fire datasets

Two geospatial datasets were used to predict litter biomassmeasured in
the field plots: (i) 30m annual NPP product from the RAP database; and (ii)
topographic variables computed from the USGS 30 m National Elevation
Dataset. The 30 m annual NPP product partitioned into PFT (annual
grass, perennial grass, shrub, and tree) (Jones et al., 2021), spans the west-
ern U.S. since 1986. It was acquired from the RAP database (https://
rangelands.app/) for each preceding year of field sampling dates
(i.e., 2018–2021) because litter usually represents the accumulation of
dead plant matter from the previous year (Scurlock et al., 2002; Pilliod
et al., 2017). This product is developed from two core datasets: the 16-
day Landsat normalized difference vegetation index (NDVI) composites
computed from TM, ETM+ and OLI surface reflectance for the continental
U.S. (Robinson et al., 2017), and the RAP Cover 3.0 product (Allred et al.,
2021). The RAP product uses data from nearly 75,000 vegetation monitor-
ing field plots of U.S. government agencies, together with Landsat Collec-
tion 2 TM, ETM+ and OLI surface reflectance, for training a temporal
convolutional network and predicting rangeland fractional cover by PFTs.
Using both core datasets, NDVI is disaggregated at pixel level to the constit-
uent PFT fractions by linear unmixing models and weighted by the phenol-
ogy of each PFT in the ecoregions of the conterminous U.S. (Omernik and
Griffith, 2014). Finally, a Landsat-adapted MOD17 NPP model (Robinson
et al., 2018) and daily GRIDMET data (Abatzoglou, 2013) are used to calcu-
late daily NPP per PFT, which is then aggregated to annual values (g Cm−2

yr−1). We used the coterminous U.S. rangelands product (Reeves and
Mitchell, 2011) at 30 m of spatial resolution to mask undesired areas
from the annual NPP product (i.e., non-rangeland pixels). This product is
based on a geospatial decision framework integrating spatially-explicit
data from the Landscape Fire and Resource Management Planning Tools
(LANDFIRE) project to delineate rangeland extension on the basis of Natu-
ral Resources Inventory (NRI) rangeland definition. The geospatial model
resulted in area estimates of 268 Mha.

Two environmental indices were computed from the USGS 30 m (one
arc-second) National Elevation Dataset over the continental U.S. and ac-
quired from the Cornell University Geospatial Information Repository
(CUGIR; https://cugir.library.cornell.edu/). The heat load index (HLI;
McCune and Keon, 2002) is computed from the geographic latitude, aspect
and slope data layers, and includes values ranging from 0 (warmest south-
west facing slopes) to 1 (coolest northeast facing slopes). The site exposure
index (SEI; Balice et al., 2000) rescales aspect to a north/south axis and con-
siders the steepness of the slope and represents relative solar exposure rang-
ing from −100 to 100 (coolest to warmest).

Predictor variableswere extracted for eachfield plot of 60m×60mby
averaging the predictor values in a regular grid of points (spacing of 6
m) systematically sampled within each plot due to the inclusion of several
pixels on the plot (Picotte and Robertson, 2011).

Wildfire perimeters within the study site with an extent ≥405 ha were
acquired from the Monitoring Trends in Burn Severity (MTBS) project
(Eidenshink et al., 2007). It provides the extent of U.S. wildfires since
1984, generated by on-screen interpretation and delineation at a scale be-
tween 1:24000 and 1:50000 of post-fire Landsat surface reflectance imagery.
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It also includes differenced Normalized Burn Ratio (dNBR) and relative
differenced Normalized Burn Ratio (RdNBR) images computed from pre-
and post-fire Landsat imagery. We characterized the fire regime of the
study site from 1984 to 2021 according to the fire-free period, i.e., time
since last wildfire in years, by classifying the study area into short (years
≤ 10), intermediate (10 < years ≤ 20) and long (years > 20) periods.

2.3. Data analyses

Litter biomass measured in the field plots in summer 2018wasmodeled
on the basis of 30-m annual NPP product by PFTs and topographic variables
computed from the USGS 30-m National Elevation Dataset (Table 1), using
a frequentist model averaging approach (FMA; Burnham and Anderson,
2002). This modeling approach supports weighted parameter estimates
from the candidate models in a full model set resulting from all the possible
predictor combinations, instead of using singlemodel estimates (Nakagawa
and Freckleton, 2011). In this sense, FMA can robustly handle model pa-
rametrization uncertainty, exhibiting better predictive ability than single
candidate models through reduced bias (Burnham and Anderson, 2002;
Dormann et al., 2018).

We checked for possible multicollinearity issues among the predictors
even though FMA is less sensitive than single candidate models tomulticol-
linearity (Freckleton, 2010). For that purpose, we computed bivariate Pear-
son correlations. All pairs of predictors had low correlation coefficients
(rPearson < |0.7|), and thus multicollinearity issues can be dismissed
(Fernández-Guisuraga et al., 2022b). Candidate litter biomass models
were fitted using multivariate linear models. We retained in the full
model set those models with an Δ-value <2 of the Akaike Information Cri-
terion adjusted to small sample sizes, following the recommendation of
Burnham and Anderson (2002), obtaining a top model set to average. The
performance of FMA calibrated for 2018 litter field data (internal model
validation with observed data) was evaluated from the coefficient of deter-
mination (R2) and the root-mean-squared error (RMSE). We checked FMA
transferability performance using the above statistics by extrapolating the
model to predict 2019, 2020 and 2021 litter field data (external model val-
idation with unobserved data). Finally, the 2018 model object was applied
to generate a spatially-explicit litter prediction map for 2021 across the
study site using contemporary NPP by PFTs and topographic variables.

We performed a random sampling of 1000 points within the rangelands
of the study site, ensuring aminimumdistance of 100mbetween points, for
extracting litter biomass and the corresponding fire-free period, using the
2021 litter biomass map and the MTBS derived map. A one-way ANOVA
and subsequent Tukey's HSD test were performed to evaluate litter biomass
differences between fire-free period scenarios. Statistical significance was
determined at the 0.05 level. Normality and homoscedasticity assumptions
were evaluated using Shapiro-Wilk and Levene tests, respectively. All statis-
tical analyses were implemented in R (R Core Team, 2021) using the
“MuMIn” (Barton, 2020), “caret” (Kuhn, 2020), “raster” (Hijmans, 2021)
and “rgdal” (Bivand et al., 2021) packages.

3. Results

The NPP of annual and perennial grasses, as well as the NPP of shrub
species, extracted from the 30-m annual NPP product of the RAP database,

https://rangelands.app/
https://rangelands.app/
https://cugir.library.cornell.edu/


Table 2
Average litter biomass model output for 2018 data computed from the frequentist
model averaging (FMA) approach. HLI = heat load index; SEI = site exposure
index.

Response
variable

Parameter Estimate Standard
error

z
value

p-value

Litter biomass (Intercept) 9.576E+03 9.491E+03 1.001 0.317
HLI −3.466E+04 8.513E+03 3.799 <0.001
SEI −1.777E+02 4.862E+01 3.405 <0.001
Annual herbs NPP 2.822E+00 7.434E-01 3.542 <0.001
Perennial herbs NPP −4.422E+00 1.025E+00 4.061 <0.001
Shrub NPP −4.826E+01 3.146E+01 1.425 0.154

J.M. Fernández-Guisuraga et al. Science of the Total Environment 860 (2023) 160634
were selected as important variables in the litter biomass averaged model
calibrated for 2018 data in the rangelands through the FMA approach. Spe-
cifically, both grass NPP variables featured a high significance in themodel
(p-values < 0.001). Conversely, the NPP of tree species was not selected in
the averaged model. The topographic variables computed from the USGS
30-m National Elevation Dataset, HLI and SEI, also featured a high signifi-
cance (p-values < 0.001). All the predictors exhibited an inverse relation-
ship with litter biomass in the rangelands, except for the NPP of annual
grass species, which featured a direct relationship (Table 2).

The litter biomass model for 2018 data, corresponding to an internal
model validation scenario with observed data, featured a significant, high
Fig. 2. Relationship between observed and predicted litter biomass for 2018 data (intern
frequentist model averaging (FMA) approach. All the relationships were significant (p-v
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overall fit (R2 = 0.61) and predictive capacity (RMSE = 657 kg ha−1).
Model predictions were closely tailored to the 1:1 line (Fig. 2).Model trans-
ferability based on the extrapolation of the FMA predictive relationships
from 2018 to the following years (2019–2021; external model validation
scenario with unobserved data) provided encouraging results. The coeffi-
cient of determination in all cases ranged around 0.5, which implies only
a slight reduction in the overallfit with respect to the internal model valida-
tion (R2 = −0.1).

A spatially-explicit prediction map of litter biomass for 2021 was
computed from FMA predictions applied to NPP by PFTs and topographic
variables (Fig. 3). The spatial distribution pattern of litter biomass largely
corresponded to that of annual grass species NPP for the previous year
(Figure SM1 of the Supplementary Material), which featured a direct rela-
tionship with litter biomass in the FMA approach.

The fire-free period had a significant effect on the litter biomass (F-value
=3.82; p-value< 0.01), being significantly higher in areas with TSLF lower
than 10-years (short fire-free period) (Fig. 4; p-values < 0.05). In fact,
annual grass species exhibited a greater cover in short fire-free period
areas, as evidenced by a query to the RAP cover product (Figure SM2 of
the Supplementary Material), matching the behavior of litter spatial vari-
ability in the site (Fig. 3) and FMA outputs. Remarkably, none of the PFT
cover variables of RAP product differed significantly between fire-free
periods (Figure SM2 of the Supplementary Material), in contrast to litter
biomass.
al model validation) and for the following years (model extrapolation) through the
alues < 0.001). The dotted black line represents the 1:1 line.



Fig. 3. Spatially-explicit prediction map of litter biomass by the frequentist model
averaging (FMA) approach for 2021. Blank regions within the study site
correspond to non-rangeland areas.

Fig. 4. Predicted effect (mean ± 95 % confidence intervals) of fire-free period on
litter biomass of the rangelands in the study site. Lowercase letters denote
significant differences at the 0.05 level.
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4. Discussion

Assuming an ecosystem steady state, annual net carbon photosynthetic
uptake by plants is balanced by carbon return to the atmosphere through
decomposition of soil organic matter and litter (i.e., soil respiration)
(Verlinden et al., 2013). Additionally, litter production must be approxi-
mately equal to aboveground and belowground NPP at the end of the grow-
ing season if soil respiration is dominated by litter decomposition
(Matthews, 1997; Chou et al., 2008). Thus, NPP is a direct proxy of litter
production, which explains the significant relationship between the spatial
variability of litter biomass in sagebrush steppe rangelands and annual NPP
partitioned into PFTs from RAP. In fact, litter biomass usually corresponds
to the largest fraction of operational estimates of actual NPP in the field
(Clark et al., 2001b), particularly in rangeland ecosystems (Luo et al.,
2002).

Remote sensing-based NPP products have a stronger physical basis than
the simple use of spectral vegetation indices in empirical models (Running
et al., 2004), traditionally used for monitoring rangeland ecosystems
(Washington-Allen et al., 2006). Contrary to spectral indices, NPP products
are not based on site-specific empirical relationships between remote sens-
ing parameters and grassland production traits, but on well-established and
transferable models involving light-use efficiency theory (Reinermann
et al., 2020). In addition, the annual NPP product from RAP accounts for
the spatial heterogeneity of rangeland productivity at sub-pixel scales
(Robinson et al., 2019), which may include several PFT with different func-
tional and spectral responses. Annual and perennial grass species feature a
completely distinct NPP pattern throughout the seasons in the northern
Great Basin because of differences in their life history traits (Alba et al.,
2015). In this context, NPP products based on categorical land cover
maps would lead to the simplification of heterogeneous land surfaces, lim-
iting the ability of predictivemodels to understand ecological processes and
inform land management (Jones et al., 2018). For example, our results re-
vealed that the relationship of annual and perennial grasses NPP with litter
biomass accumulation followed an opposite pattern, which agrees with
previous field-based research in the northern Great Basin (e.g., Goergen
et al., 2011; Parkinson et al., 2013), and illustrates that accumulation of lit-
ter biomass is promoted by the life history traits of annual invasive grasses.
Spatially-explicit products generated from NPP models that do not account
for sub-pixel dynamics of specific PFTs would therefore be unrealistic.

Topographic-related variables computed from the USGS 30-m National
Elevation Dataset (i.e., HLI and SEI indices) represent a gradient of site tem-
perature, available moisture, and potential evapotranspiration over the
landscape (Johnson and Miller, 2006). Thus, the influence of direct inci-
dent solar radiation on plant productivity through controls on vegetation
moisture stress and plant growing conditions in the rangelands (Reeves
et al., 2018) could explain the correlation between the spatial variability
of litter biomass and topographic indices related to landscape configuration
of the rangelands. Previous research in Wyoming big sagebrush steppe
communities of southeastern Oregon and northern Nevada also reported
the importance of topographic-related variables in driving vegetation
cover and productivity of several PFTs (Passey et al., 1982; Davies et al.,
2007; Mahood and Balch, 2019).

The modeling performance in our study is not comparable to previous
research since (i) to date, mapping of litter biomass has not been considered
in rangeland ecosystems, and (ii) the application of remote sensing-based
techniqueswith a physical basis for estimating biomass production remains
underrepresented in the rangeland literature (Reinermann et al., 2020). In
addition, previous research regarding biomass production in rangelands
often lacks temporal replication for validation purposes with unobserved
data (Kearney et al., 2022). In our study, model transferability based on
temporal extrapolation of the predictive relationships exhibited similar per-
formance to that of the internal model validation with observed data. This
may be related to the (i) reduced bias and increased predictive performance
of the FMAmodeling approach (Tsalyuk et al., 2017; Dormann et al., 2018),
and (ii) the physical nature of the annual NPP product fromRAP, which im-
proves model performance (Reinermann et al., 2020).
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Despite litter biomass being a relatively unexplored component of the
fuel complex in the northern Great Basin (Pilliod et al., 2017), the present
study provided spatially-explicit evidence to support previous assumptions
(Davies and Nafus, 2013; Davies et al., 2021a) that high biomass per unit
area and early senescence of annual species in grass-invaded communities
leads tomassive horizontal fuel amount and continuity because of litter bio-
mass accumulation. In fact, ourmodels revealed that litter biomass, favored
by the presence of annual invasive grasses, was significantly higher in
rangelands featuring short fire-free periods (TSLF lower than 10-years).
Bradley et al. (2018) found that about 75 % of the wildfires in cheatgrass-
dominated landscapes of the Great Basin were human-caused, and these
landscapes are strongly associated with anthropic infrastructures that act
as a vector for the spread of invasive species. Also, litter accumulation
from grasses promotes the establishment of invasive grass species
(Wolkovich et al., 2009), and sustains the fine fuel complex (Davies and
Nafus, 2013). These factors could explain the feedbacks within the invasive
annual grass-fire cycle and the evidenced shorter fire-free periods. In line
with our results, Smith et al. (2022b) demonstrated that time-lagged,
grass fuel biomass accumulationwas a strong predictor of wildfire probabil-
ity in the Great Basin from1988 to 2019.However, previous research found
no association between the number of fires from 1980 to 2014 in the whole
Great Basin ecoregion and litter cover (Pilliod et al., 2017). This may be due
to a mismatch between the extent of the study sites, or by litter cover esti-
mates that may not capture the variability in the actual fine fuel depth
and load and wildfire behavior (Davies et al., 2021a). In addition, our re-
sults demonstrated that none of the PFT cover variables of RAP product dif-
fered significantly between fire-free period scenarios, in line with the
results of Pilliod et al. (2017). Again, vegetation cover by PFT may not be
an adequate proxy for wildfire behavior.

The findings of our study may have broad implications for the manage-
ment of sagebrush steppe communities invaded by exotic annual grasses in
the northern Great Basin tominimize the prevailing grass-fire cycle. Within
this region, repeated livestock grazing during the growing season can pro-
mote invasive annual grass proliferation (Mack and Thompson, 1982;
Chambers et al., 2007; Chambers et al., 2014). Yet, moderate grazing in
the region has little impact on sagebrush steppe plant communities when
alternated between the growing season and the dormant season in the fall
and winter when perennial bunchgrasses are less susceptible to grazing. A
long-term grazing exclusion study, spanning >50 years, highlighted the ef-
fectiveness of moderate grazing to reduce invasive annual grass prolifera-
tion and promote perennial bunchgrasses after fire (Davies et al., 2010b).
While these resultswere obtainedwith a limited sample size (n=3), recent
work highlighted thatmoderate livestock grazing in the dormant season be-
fore fire can promote perennial bunchgrasses and reduce invasive annual
grass biomass post-fire (Davies et al., 2021b). Based on our results, land
managers may consider fall-winter grazing treatments -where deemed
appropriate- aimed at reducing the litter production by annual grass species
in the previous year's growing season, instead of attempting to reduce the
cover of these species (Perryman et al., 2018).

The proposed remote sensing-derived productsmay be a key instrument
to meet this objective and prioritize areas for the maintenance of fuel
breaks, seeding of perennial grass species and fall-winter grazing, which
could be appropriate actions for reducing the risk of frequent wildfires in
sagebrush steppe communities with a high fine fuel load (Redmond et al.,
2013; Pilliod et al., 2017; Davies et al., 2021a).

5. Conclusions

Our results demonstrated that the annual NPP product from the RAP da-
tabase was able to account for productivity by PFTs and litter accumulation
at sub-pixel scales. Also, topographic variables, computed from the Na-
tional Elevation Dataset, provided additional information related to the
spatial variability of litter biomass across rangelands, including connection
with temperature, available moisture, and potential evapotranspiration
over the landscape. The generalization ability of NPP models, related to
their high physical basis, enabled an accurate time extrapolation of litter
7

biomass predictive relationships and thus offer high potential for evaluat-
ing wildfire risk and informing adaptive management strategies. According
to our expectations, litter biomass accumulation, favored by the presence of
annual invasive and perennial grasses, explained feedbacks within the
grass-fire cycle that promote short fire-free periods in sagebrush steppe
rangeland communities. Annual invasive grasses are currently increasing
across Great Basin rangelands, which makes their management important.
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