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ABSTRACT: Seven cannulated (rumen and duodenal)
steers (264 + 8 kg BW) consuming low-quality forage (5%
CP) were used to determine the influence of CP
degradability (CPD) and supplementation frequency (SF)
on DMI, ruminal fermentation, and nutrient digestion.
Treatments (TRT) included an unsupplemented control and
degradable intake protein (DIP) or undegradable intake
protein (UIP) provided daily, every 3 d, or every 6 d. The
DIP TRT (18% UIP) were calculated to provide 100% of
the DIP requirement while the UIP TRT (60% UIP) were
provided on an isonitrogenous basis compared with DIP
TRT. Forage DMI was not affected (P > 0.10) by TRT.
Total DM and N intake, duodenal N flow, and intestinal N
disappearance increased (P < 0.01) with supplementation.
No differences in DMI, N intake, duodenal N flow, or
intestinal N disappearance were observed due to CPD or SF
(P > 0.10). Supplemental CP increased (P < 0.01) total
tract DM and N digestibility with no difference (P > 0.10)
due to CPD or SF. Rumen fluid was collected 0, 3, 6, 9, 12,
and 24 h after feeding on a d of and a d before
supplementation for all TRT. Ammonia N (mM) increased
(P < 0.05) the d of and the d before supplementation for all
protein TRT. However, a CPD x SF interaction (P < 0.05)
on the d of supplementation indicated that NH; N increased
at a greater rate for DIP as SF decreased compared with
UIP. Ammonia N linearly decreased (P < 0.01) as SF
decreased the d before supplementation. Results suggest
CP supplements consisting of 20 to 60% UIP can be
effectively used by steers consuming low-quality forage
without adversely affecting DMI and nutrient digestibility,
even when provided as infrequently as once every 6 d.
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Introduction

Many cattle in the western United States consume
low-quality forage (< 6% CP) from late summer through
winter. Supplementation with protein increases cow weight
gain and body condition score (BCS; Clanton and
Zimmerman, 1970; Beaty et al., 1994), forage intake and
digestibility (Kartchner, 1980; Koster et al., 1996), and can
improve reproductive performance (Sasser et al., 1988;
Wiley et al., 1991). However, winter supplementation can
be very expensive. Winter feed costs in the intermountain
west often total $100 to 200 per cow per year. In addition
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to actual supplement costs, winter supplementation includes
other expenses such as the labor, time, and equipment
associated with supplement delivery.

Decreasing frequency of protein supplementation
is one management practice that decreases labor and time
costs. Nolan and Leng (1972) suggested that recycling of
absorbed N to the rumen may support fermentation between
times of supplementation. In addition, research has shown
that protein supplements can be fed at infrequent intervals
and still maintain acceptable levels of performance (Huston
et al., 1997); however, data are limited comparing the
effects of degradable intake protein (DIP) and
undegradable intake protein (UIP) supplemented at
infrequent intervals on forage intake, forage digestibility,
and efficiency of N use. The objective of this research is to
determine the influence of ruminal protein degradability
(CPD) and supplementation frequency (SF) on utilization
of low-quality forage by ruminants. This knowledge will
assist in developing management strategies that help reduce
winter feed costs while maintaining acceptable levels of
production.

Materials and Methods

Seven cannulated (ruminal and duodenal) beef
steers (264 + 8 kg) were allotted randomly to one of seven
treatments in a incomplete Latin square design and housed
in individual pens (2 x 4 m) within an enclosed barn with
continuous  lighting. Treatments consisted of an
unsupplemented control and DIP or UIP supplemented
daily, every third d, or every sixth d (CON, DIPD, DIP3D,
DIP6D, UIPD, UIP3D, and UIP6D for control, DIP daily,
DIP every third d, DIP every sixth d, UIP daily, UIP every
third d, and UIP every sixth d, respectively). The DIP
treatments were formulated to provide 100% of the
estimated DIP requirement assuming a microbial efficiency
of 11% (NRC, 1996). The DIP3D and DIP6D treatments
received threefold and sixfold the amount of supplement (N
basis) on their respective supplementation d compared with
DIPD. An equal amount (N basis) of UIP supplement was
provided; therefore, all supplemented treatments received
the same amount of supplemental N over a 6 d period. The
amount of CP supplied by each supplement was
approximately 0.10% of BW/d (averaged over a 6 d
period). Protein supplements were placed directly into the
rumen via the ruminal cannula at 0745 every d, every third
d, or every sixth d for the daily, every third d, and every
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sixth d treatments, respectively. Steers had continuous
access to fresh water and low-quality meadow hay.
Nutrient content of meadow hay and protein supplements is
listed in Table 1. Hay was provided daily (0800) at 120%
of the average intake for the previous 5 d, with feed refusals
from the previous day determined before feeding. A trace
mineralized salt mix was available free choice (7.3% Ca,
7.2% P, 27.8% Na, 23.1% Cl, 1.5% K, 1.7 % Mg, 0.5% S,
2307 ppm Mn, 3034 ppm Fe, 1340 ppm Cu, 3202 ppm Zn,
32 ppm Co, 78 ppm I, 85 ppm Se, 79 IU/kg vitamin E, and
397 klIU/kg vitamin A). In addition, an intramuscular
injection of vitamins A, D, and E (500,000, 50,000, and
1500 IU of Vitamins A, D, and E, respectively; Vitamin E-
AD 300; Agrilabs; St. Joseph, MO) was administered to
each steer at the onset of the trial to safeguard against
deficiency.

Experimental periods were 24 d, with 10 d of diet
adaptation and 14 d of sampling. Intake was measured
beginning d 11 and concluding d 22. On d 13 and 18,
treatment effects on ruminal DM and fluid contents were
determined by manually removing reticulorumen contents 4
h after feeding. This allowed sampling on a day of
supplementation and a day preceding supplementation for
all treatments. Total ruminal contents were weighed, mixed
by hand, and sub-sampled in triplicate (approximately 400
g)- The remaining ruminal contents were replaced
immediately into the animal. Ruminal samples were
weighed; dried in a forced-air oven (55°C; 96 h); reweighed
for DM; ground to pass a 1-mm screen in a2 Wiley mill; and
composited within period and day by steer.

Gelatin capsules containing 9 g of chromic oxide
were dosed intra-ruminally 0600 and 1700 on d 14 to 24 for
use as an indigestible marker of digesta flow. Samples of
meadow hay, protein supplements, and orts were collected
ond 13 to 22 and dried at 55°C for 48 h. On d 19 to 24,
approximately 200 g of duodenal digesta was collected at
0800, 1200, 1600, and 2000. Sub-samples (75 g) were
composited by steer and stored (-20°C). Duodenal samples
were lyophilized. Feces were collected on d 19 to 24.
Steers were fitted with harnesses and fecal bags on d 19
(0700). Bags were emptied once daily, feces manually
mixed, and a 2.5% sub-sample (wet weight) obtained,
weighed, dried for 96 h at 55°C, re-weighed for DM, and
composited by steer. Dned samples of hay, orts, and feces
were ground as described above. Duodenal samples were
ground through a 1-mm screen using a Cyclone Sample
Mill (UDY Corporation, Fort Collins, CO) due to limited
sample size.

On d 19 and 24 (day of and a day before protein
supplementation for all treatments, respectively), ruminal
fluid (approximately 100 mL) was collected from each steer
by suction strainer immediately prior to feeding and at 3, 6,
9, 12, and 24 h post feeding. Ruminal fluid pH was
measured immediately after collection. Five mL were
acidified with 1 mL of 25% (wt/vol) meta-phosphoric acid
and stored (-20°C) for subsequent analysis of NH; N by a
modification (sodium salicylate substituted for phenol) of
the procedure described by Broderick and Kang (1980)
using a UV/VIS spectrophotometer (Spectronic 710
Spectrophotometer, Bausch & Lomb, Inc., Rochester, NY).
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Frozen (-20°C) ruminal samples were prepared for
analysis by thawing, centrifuging (15,000 x g, 10 min), and
collecting the supernatant. Ground samples of meadow hay
and protein supplements were composited by period and
daily orts composited by steer (within period) on an equal
weight basis (5% as-fed). Feed, orts, duodenal digesta, and
feces were analyzed for DM and OM (AOAC, 1990), N
(Kjeltec Auto 1030 Analyzer, Tecator AB, Hoganis,
Sweden), and NDF and ADF (Ankom 200 Fiber Analyzer,
Ankom Co., Fairport, NY). Duodenal and fecal samples
were analyzed for Cr using atomic absorption spectroscopy
(air/acetylene flame; Model 351 AA/AE
Spectrophotometer, Instrumentation Laboratory, Inc.,
Lexington, MA). Duodenal Cr concentration was used in
conjunction with nutrient concentration to determine
duodenal nutrient flow (Merchen, 1988). Recovery of
dosed Cr in the feces averaged 100.1 + 1.7 %.

Data were analyzed as an incomplete 7 x 4 Latin
square using the GLM procedure of SAS (1996). The
model included period, steer, and treatment. Because
treatment structure consisted of a 2 x 3 factorial plus a
negative control, nonorthogonal contrasts were used to
partition specific treatment effects. Contrast statements
were: 1) Control vs protein supplementation; 2) DIP vs
UIP; 3) linear effect of SF; 4) quadratic effect of SF; 5)
contrast 2 x contrast 3; 6) contrast 2 x contrast 4, Response
variables included: DM and OM intake; ruminal, intestinal,
and total tract digestibility of DM, OM, and CP; rumen
fluid volume; and rumen DM volume.

Ruminal pH and NH; N concentrations collected at
fixed times after feeding on d 19 and 24 were analyzed
using the REPEATED statement with the MIXED
procedure of SAS (1996). The model included steer,
period, treatment, day, and treatment x day. In addition,
steer x period x treatment was used to specify variation
between animals (using the RANDOM statement). Steer x
period x treatment was used as the SUBJECT and
autoregression used as the covariance structure. The same
contrasts noted above were used to partition the treatment
sums of squares.

Results and Discussion

Intake of hay DM and OM were not affected (P >
0.10) by CP supplementation or degradability, while total
intake of DM, OM, and N increased (P < 0.01) with
supplementation (Table 2). Also, intake of hay and total
DM and OM increased quadratically (P < 0.05) as SF
decreased.

No differences (P > 0.05) were observed due to CP
supplementation, CPD, or SF for apparent ruminal OM, N,
or NDF digestibility (Table 2). Apparent ruminal N
digestibility was negative for all treatments, suggesting that
N recycling played an important role in ruminal N
dynamics.

Daily duodenal flow of OM and N (g/kg BW)
increased (P < 0.01) with CP supplementation and
increased quadratically (P < 0.01) due to SF. Given the
tendency (P = 0.11) for N intake to increase quadratically as
SF decreased, duodenal flow of OM and N corresponded




directly to the observed intake of OM and N noted with CP
supplementation.

Daily intestinal disappearance of OM and N (g/kg
BW) was greater (P < 0.01) with CP supplementation. In
addition, intestinal disappearance of N increased
quadratically as SF decreased. The lack of a difference in
N disappearance from the intestine for DIP and UIP
treatments suggests that intestinal digestibility of N flowing
to the duodenum for all supplemented treatments was
similar.

Apparent total tract digestion of DM, OM, N,
NDF, and ADF was greater (P < 0.01) with CP
supplementation. This agrees with other studies that have
reported increased digestibility when N was supplemented
to beef cattle consuming low-quality forage (DelCurto et
al., 1990; Scott and Hibberd, 1990).

Ruminal DM fill (g/kg BW) on the d of
supplementation (Table 3) was not affected by CP
supplementation (P > 0.10); however, it increased as SF
decreased. This may be due in part to the large amount of
supplement DM dosed into the rumen on the d of
supplementation for the every third and sixth d treatments
(the amount supplement DM dosed on the d of
supplementation for DIP3D, DIP6D, UIP3D, and UIP6D
was 5.7, 11.4, 4.8, and 9.6 g/kg BW, respectively). In
contrast, CP supplementation decreased (P < 0.05) ruminal
DM fill on the d before supplementation compared with
CON. Ruminal liquid volume (g/kg BW) was decreased (P
< 0.05) with CP supplementation on the d of and before
supplementation. Also, an interaction involving the linear
effect of SF x CPD (P < 0.05) was noted for ruminal liquid
volume on the d of supplementation. This interaction
suggests that liquid volume increased for DIP as SF
decreased compared with little to no change for UIP.

Treatment x time interactions (P < 0.01) were
observed for ruminal NH; N on the d of and the d before
CP supplementation. In addition, time x treatment
interactions (P < 0.01) were observed for ruminal pH on the
d of supplementation. However, after considering the
nature of the interactions, we concluded that discussing
treatment means while providing treatment x time figures
would aid in interpretation and discussion of the data.

Ruminal NH; N on the d of supplementation
increased (P < 0.05) due to CP supplementation (Table 4;
Figure 1). In addition, an interaction concerning the linear
effect of SF x CPD (P < 0.01) was observed indicating that
ruminal NH; N increased at a greater rate for DIP compared
with UIP as SF decreased. It is of interest to note that the
greatest ruminal NH; N concentrations on the third d and
sixth d treatments for DIP and UIP occurred 24 h after
feeding (Figure 1). This delayed NH; N peak agrees with
work by Beaty et al. (1994) in which infrequently
supplemented steers (three times per week) had later peaks
in NH; N compared with daily supplemented animals. On
the d before supplementation, ruminal NH; N was greater
(P < 0.05) for CP supplemented steers and decreased
linearly (P < 0.01) as SF decreased (Table 4; Figure 1).

Ruminal pH decreased (P < 0.01) due to
supplemental CP on the d of supplementation (Table 4;
Figure 2). However, it was not influenced (P > 0.05) by CP
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supplementation on the d before supplementation (Table 4).
Ruminal pH was lower (P < 0.05) for UIP compared with
DIP and increased (P < 0.01) as SF decreased on the d
before supplementation.

Implicatibns

Infrequent supplementation of rumen degradable
and undegradable intake protein is a valid alternative to
daily supplementation. It appears that ruminants
consuming low-quality forage are able to effectively utilize
supplemental nitrogen, even with supplementation once
every six days, independent of ruminal degradability.
Therefore, infrequent supplementation of nitrogen provides
beef producers with a management alternative to decrease
supplementation costs and improve economic returns.
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Table 1. Supplement composition and feedstuff nutrient
content

Item Meadow Hay DIP UIP
Supplement  Supplement
Soybean meal - 97.5 -
SoyPLUS* - - 67.7
Blood meal - - 29.8
Molasses - 2.5 2.5
Nutrient
Composition
CP, % DM 53 52:8 59.7
UIP, %CP 19.0 17.6 59.9
OM, % DM 914 92.6 944
NDF, % DM 60.6 11.9 28.2
ADF, %DM 30.8 5.2 6.6

* SoyPLUS is an expeller-processed soybean meal from
West Central Soy, Ralston, Iowa
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Figure 1. Effect of protein degradability and

supplementation frequency on steer ruminal ammonia the
day of (A) and the day before (B) supplementation.
Columns from left to right for each treatment represent 0, 3,
6, 9, 12, and 24 hours post-feeding, respectively.
Treatments were: Control; DIPD degradable intake
protein every day; DIP3D = DIP every third day; DIP6D =
DIP every sixth day; UIPD = undegradable intake protein
every day; UIP3D = UIP every third day; UIP6D = UIP
every sixth day.

DIP6D UIPD

Control DIPD  DIP3D UIP3D  UIP6D
Treatment
Figure 2. Effect of protein degradability and

supplementation frequency on steer ruminal pH the day of
supplementation. Columns from left to right for each
treatment represent 0, 3, 6, 9, 12, and 24 hours post-feeding,
respectively. Treatments were: Control; DIPD
degradable intake protein every day; DIP3D = DIP every
third day; DIP6D = DIP every sixth day; UIPD
undegradable intake protein every day; UIP3D = UIP every
third day; UIP6D = UIP every sixth day.
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